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Abstract—Biomedical imaging has become an essential tool in 

both basic research and the clinical sciences. Significant advances 

in imaging modalities such as computed tomography (CT) or 

magnetic resonance imaging (MRI) in recent years have 

contributed to a substantial increase in the quantity and quality 

of such images. Being able to integrate and compare such image-

based data is useful for epidemiological studies, educational uses, 

monitoring the clinical progress of a patient or translational 

science purposes. The work presented in this paper uses 

examples from biomedical atlases. This paper discusses the need 

for biomedical image data integration, the shortcomings of 

existing solutions and proposes the opportunity to build a new 

technique. 
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I.  INTRODUCTION 

A biomedical atlas consists of a graphical model, the 
ontology associated with the graphical model and a mapping 
between those two. The ontology contains a collection of 
anatomical domains and relations between those domains. The 
graphical model is a digital image of an object (e.g., of a 
human or animal body) along with the identified anatomical 
domains. Three of the main atlases in the current domain of 
interest are the e-Mouse Atlas of Gene Expression (EMAGE) 
[1], the Allen Developing Mouse Brain Atlas [2], and the 
GENSAT Brain Atlas [3]. These atlases are the data resources 
for gene expression information. Gene expression information 
describes whether or not a gene is expressed in a location of a 
particular anatomical structure relating to a model organism 
[4]. This research focuses on the mouse embryo as the model 
organism. 

The Allen Developing Mouse Brain Atlas is a data source 
storing gene expression data across seven developmental stages 
of the mouse brain [5]. EMAGE [6] is another example of a 
mouse atlas covering gene expression data for anatomical 
structures corresponding to the EMAP Anatomy Ontology [7]. 
Gene expression data for the mouse brain is also available from 
EMAGE. Another example of a mouse atlas that provides gene 
expression data for the mouse brain is the GENSAT brain atlas. 
GENSAT is a gene expression atlas of both the developing and 

adult mouse, and stores gene expression data for anatomical 

structures corresponding brain and spinal cord [3].  

Although the EMAGE, the GENSAT brain atlas and the 

Allen Developing Mouse Brain Atlas are fundamental 

resources, they cannot be considered complete. There are a 

number of explanations for this, including differences in the 

experimental designs and various interpretation of results [8]. 

In addition, different update routines may cause data from 

these atlases to remain incomplete. As a consequence, these 

atlases may provide different results even for the same gene 

expression query.  

In addition to incompleteness, these atlases can suffer from 

inconsistency [8]. Inconsistency implies when one biomedical 

atlas publishes an annotation suggesting the gene is expressed 
in a particular structure, and a second annotation suggesting it 

is not [9]. Such variability is often associated with the 

complexity of the underlying experiments, including 

unrecognised differences in experiments, and human error on 

the part of the resource's curators [9]. All resources must be 

exploited to generate a full and complete query results. 

Therefore, the integration of anatomical space in the context of 

same-species atlases can provide the solution to facilitate the 

sharing of biomedical data from many resources. 

The mapping of anatomical space across different model 

organisms [10], such as the linking of human and the mouse 
embryo model organisms, can be useful to facilitate the 

integration of biomedical data between cross-species atlases. 

Integrating data from cross-species atlases is useful for the 

expression of homologous genes experimental field [11]. 

Corresponding organs and genes in different species can be 

homologous. Homologous genes are the same form of genes 

expressed in a particular body part of two different species. 

These sets of genes can be compared meaningfully to facilitate 

analysis, modelling and prediction in biomedicine [12; 13; 14]. 

For example, integrating data between the mouse atlas and the 

chick atlas to facilitate the comparison of homologous genes 

between these organisms assists biologists in understanding 
which genes are important in foetal development [15]. 

Consequently, integration of biomedical atlases is vital both 

within and across species boundaries. 

Although there are many different methods to integrate data 

from these resources, the use of image-based data integration is 

considered in this research. Image-based data integration 

typically involves anatomical space mapping. Given two 



International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  
Volume 03 – Issue 06, November 2014 

 

www.ijcit.com    1173 
 

images C1 and C2, mapping one image onto another means 

that, for each anatomical region in image C1, we try to find a 

corresponding region with the same intended meaning, in 

image C2. These anatomical regions occupy unique anatomical 

spaces in the corresponding images. Of the existing solutions to 

this problem, ontology-based solutions tend to lack spatial 

precision. Image processing-based solutions have difficulties 

when the underlying morphologies are too different. 
This paper discusses the issues related to image 

representation and mappings. An overview of image mapping 
problems is provided in Section II. Section III explains the 
existing mapping solutions and describes how these solutions 
may be used to deal with image mapping issues. The problems 
to be addressed by this research are discussed in Section IV. 
Conclusions of this research are presented in Section V. 

II. IMAGE MAPPING PROBLEMS OVERVIEW 

A. Image Mapping Classiffication 

There are two categories of image mappings. The first case 

involves a single query image and a set of potential target 

images and the matching process should return those images 

from the target set that match the query image by some notion 

of equivalence. The second case is given a drawn query region 

in one image, find the corresponding region in another image 

that matches the query region. Either of these cases can be 

classified into two subcases. The first subcase is the images 

with painted domains. The second subcase refers to images 

with no painted domain.  

B.  Image Segmentation 

Image segmentation involves breaking an image down into 

its basic components or regions. Before we can use the 

anatomy ontology to label the painted domains, we must 

perform image segmentation. The common methods of image 

segmentation are segmenting an image based on colour, 

boundary and shape. We use the words painted and segmented 
interchangeably. The term paint denotes a technique of 

drawing on an image region. The purpose of painting is to tag 

a region according to an anatomy ontology. MAPaint [16] 

software provides the painting mechanism. MAPaint is a 3D 

painting program based on the woolz image processing 

library. The software allows the definition and saving of 

arbitrarily complex 2D spatial domains by painting over the 

appropriate region. The basic idea of painting is for image 

segmentation. The purpose of segmenting an arbitrary region 

is to partition a 2D image space into multiple segments. The 

result of image segmentation is a set of regions that 
collectively cover the entire image. 

C.  Variation of Morphologies 

In general, the two cases of image mappings can be carried 

out between images that have exactly the same morphologies, 

as well as between images that have different underlying 

morphologies. Morphology concerns the different formation 
of a particular anatomical structure in terms of scale, 

orientation and position. Fig. 1 depicts two image slices of an 

embryo. These images are good representatives for the non- 

identical images with different morphologies. Both images 

contain the following structures: liver, heart, and lung. 

However, these structures are different in terms of their scales 

and positions. For example, in terms of scale, the liver in Fig. 

1(a) appears slightly smaller compared to the liver in Fig. 1(b). 

In terms of position, the heart in Fig. 1(a) is located above the 

liver and the lung. In contrast, the heart in Fig. 1(b) is located 
between the liver and the lung.  

 

 
 

Figure 1. Two non-identical mouse embryo images with the 

same structures: liver, heart, and lung. However, these 

structures are different in their morphologies. 

 

 

Fig. 2 depicts two images of an embryo across different visual 
domains. The image in Fig. 2(a) is the clip art graphic version 

of the image in Fig. 2(b). The visual content of both images is 

similar at the higher scene level, but both images are entirely 

different at the pixel-level.  These images are good 

representation of the non-identical images with the same 

morphology. 

 

 
 

Figure 2. Two non-identical mouse embryo images with 

morphologically the same set of structures in terms of scales, 

(a) (b) 

(a) (b) 
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orientations and positions. The visual content of both images 

is only similar at the higher scene level, but both images are 

entirely different at the pixel-level. 

Although the two images are dissimilar at the pixel-level, both 

images are morphologically the same set of structures in terms 

of their scales, orientations and positions. 

D. Criteria for Matching Images/Regions 

In a case in which images are lacking painted domains, the 

criteria to consider whether two images match or two regions 

match can be based on the equivalence of their low-level 

image features. Commonly extracted features include colour, 

texture and shape. These low-level image features can either 

represent a whole image or a specific region. A notion of 

equivalence is quantified using either the combination of 
several low-level features or making use only on a particular 

feature. 

Colour information can be extracted from an image and 

represented as colour histogram [17; 18]. A global colour 

histogram can be used to define the number of pixels that have 

colours in each of a fixed list of colour ranges for a whole 

image. Two images match when their colour histograms 

match. Similarly, image regions matching can also be 

performed using colour histograms. A local colour histogram 

can be used to define the colour information for a specfic 

region of an image. An image can be divided into several 
regions and a colour histogram can be created for each region. 

Two regions match when their local colour histograms match. 

Texture is defined as properties related to the appearance 

and feel of a surface. It can be categorised into two types. The 

first is stochastic, meaning rough, grainy and irregular; and 

second is structural, or having a regular and smooth surface. 

The main characteristics of the texture are distinctive and 

repetitive over a region. Texture features are useful in the 

comparison of equivalence between two images. The 

equivalence between two images can be compared based on 

texture matching. Texture matching is performed by extracting 

the texture features from the images and the images are 
segmented into regions; each containing a homogeneous 

texture pattern [19; 20]. Two images match or two regions 

match when they are homogeneous in terms of their texture 

patterns.  

Shape matching is performed by comparing the region 

based edge features. Edge features extracted from images are 

considered as point sets. For a point on the first image, it is 

expected to find the best matching point on the second image 

according to the edge features. Two images match when their 

feature point correspondences match. Similarly, image regions 

matching can also be performed by comparing the region-
based edge features. Edge features extracted from one specific 

region are considered point sets. A region matches another 

when a point on a region in one image is found on the region 

in the other image, according to the edge features.  

In the case of images with painted domains, the criteria to 

consider whether two images match or two regions match can 

be based on the equivalence of their high-level semantic 

classifications based on the painted regions; an image or a 

specific region in one image can be classified into categories 

which are intended to distinguish semantically meaningful 

differences [21]. Spatial knowledge representations are useful 

for describing the spatial relationships among the painted 

regions in an image. Commonly use spatial knowledge 

representation is the topological properties. Topological 

properties include the number of subregions and the 
relationships between the properties of the subregions and the 

regions [22]. These topological properties are examples of 

meaningful semantics which may be derived from the content 

of an image. For example, if a structure is seen, it can be 

connected to some previously learned spatial concepts (e.g. 

lies to the right of the stomach and overlies the gallbladder ), 

which can be used to recognise this structure is a liver. 

Besides spatial concepts, the types of shared semantic 

attributes which might describe common structure properties 

are such as parts of a structure (e.g. has four chambers, two 

superior atria and two inferior ventricles which can be used to 
recognise this structure is a heart), common materials (e.g. 

material with positive mass which can be used to recognise 

anatomical structures with positive mass, such as liver and 

brain), and common immaterial (e.g. material with no mass 

which can be used to recognise anatomical structures with no 

mass such as the cavity of the stomach). 

In the context of finding a matching image, two images 

match when a region matching scheme that integrates the 

semantic properties of all the regions in one image matches 

the semantic properties of all the regions in the other image. 

Similarly, in the context of finding a matching region, two 

regions match when the semantic properties of a region match 
with the semantic properties of the other region. 

Since the gene expression data in biomedical atlases are 

queried by painting or drawing arbitrary regions in the 

anatomical images, this research focuses on image region 

mappings. Therefore, the case of mapping to find a matching 

image is not further explored. In general, there is no literature 

that provides the definition of criteria to determine if two 

regions match biologically. Therefore, in the case of region 

mappings between non-identical images, we proposed to use 

the mappings from biologists as the golden standard.  

III. OVERVIEW OF MAPPING SOLUTIONS 

In general, image mappings can be carried out using image 
processing and ontology-based methods. In particular, this 
research focuses on the ontology-based mapping via the use of 
spatial relations between anatomical regions and the image 
processing-based mapping via the use of fiducial points.  

A. Image Processing Algorithm 

There are several examples of image processing algorithms, 
which perform mapping based on fiducial points. These are the 
work as proposed by Cai et al. [15], Yu and Morel [23], Park et 
al. [24], Wong and Orchard [25], You et al. [26], and Zeng et 
al. [27]. There is also one exemplary work of image processing 
algorithm, which makes use of semantic concepts. Liu et al. 
[28] presented an algorithm, which segments an image into 
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different regions. Each region is extracted together with its 
low-level features. These features are linked to the semantic 
concepts obtained in a proposed decision tree-based learning 
algorithm. The matching algorithm combines both query by 
keyword and query by region of interest. However, this 
algorithm does not include the notion of fiducial points, which 
makes the method irrelevant to the scope of this research.  

An image processing algorithm may have difficulty to cope 
with the mapping of regions between similar images but which 
are not identical in their morphologies. Differences in 
morphologies and regions between two images can cause 
different pixel intensity distributions, which the image 
processing technique is unable to cope with. An exemplary 
case is when the mapping is between image slices of an 
embryo. This also applies to non-identical images that are not 
identical in their morphologies. Similarly, an image processing 
algorithm may have difficulty to cope with the mapping of 
regions between non-identical images with same morphology. 
The morphology of an animal can be represented in different 
set of pixel distributions. This is the case when the visual 
content of both images is only similar at the higher scene level, 
but entirely different at the pixel-level.  

Nevertheless, in the case of mapping a region from one 
image onto another where the two images have exactly the 
same morphologies and these morphologies have exactly the 
same pixel intensity distribution, the image processing 
algorithm may provide image region mappings with good 
precision.  
 

B. Ontologies 

The concepts of spatial relations have been well employed 
in ontologies by both FMA (Foundational Model of Anatomy) 
[29] and OBO (Open Biomedical Ontologies) [30] to describe 
anatomical space in a biomedical domain. Other commonly 
used ontologies include RadLex and SNOMED-CT. In general, 
spatial relations between anatomical entities are described 
using relationships from the following categories: Mereological 
Relations, Topological Relations and Location Relations. 
Mereological relations describe the concept of parthood 
between the whole and its parts, for example, finger is part of 
hand, hand is part of the arm and so forth. Topological relations 
describe the concept of connectedness among entities, for 
example, two entities are externally connected if the distance 
between them is zero and do not overlap; one example is in 
human major parts of the joint, where the synovial cavity is 
externally connected to the synovial membrane [30]. Location 
relations describe the concept of relative location between 
entities that may coincide wholly or partially without being part 
of one another, for example, the brain is located in (but not part 
of) cranial cavity. A full exposition of spatial relations for 
biomedical domains can be found in [31, 32].  

In the case of mapping image regions using the same 
ontology, this method may provide a mapping with good 
precision if the regions being mapped are segmented in both 
images and the ontology has a definition for this particular 
region. This applies to the images with exactly the same 
morphology as well as the images that are morphologically 
different.  

In the case of mapping image regions using different 
ontologies, this method may provide a mapping with good 
precision if the regions being mapped are segmented in both 
images, these regions have their definitions in the ontologies, 
and the term associated with each region can be mapped from 
one ontology to another one. This applies to the images with 
exactly the same morphology as well as the images that are 
morphologically different.  

In general, an ontology-based method may provide an 
image region mapping low in precision if the region to be 
mapped is visible in one image but not in the other. This 
applies in both cases either using the exact same ontology or 
using different, but aligned ontologies. 

IV. DISCUSSION 

This research proposes to develop a new mapping 
technique by addressing many of the limitations of existing 
solutions. For example, the ontology-based method requires the 
image to be painted according to anatomical regions. The new 
proposed method should not require the image to be painted in 
order to perform the mapping. Hence, mappings should work 
regardless of one region is segmented in one image and not in 
the other, or when one term is defined in one ontology but not 
in the other.  

In addition, the technique should be able to perform 
mapping between images that are morphologically different. 
Hence, the mappings should work regardless of having varying 
orientation and position of the structure nor having a different 
number of regions in the two images. These are the issues with 
existing solutions, which should be considered in the 
development of a new mapping technique. This technique will 
be useful for integrating image-based data towards the 
integration of biomedical atlases. This technique is expected to 
provide an alternative to the image processing-based solution 
that may fail when the images have different underlying 
morphologies, or when the mapping is between images 
acquired in different modalities, as that image processing is not 
capable with these. Finally, this technique is expected to 
overcome the drawbacks of an ontology-based solution that 
may not be available for images without painted domains, or 
when there are no matching ontologies. Although we can argue 
that a biologist can paint an image according to its anatomical 
regions, this is a hard task for biologists and is expensive to 
acquire.  

V. CONCLUSION 

Image-based data integration is useful to facilitate the sharing 
of biomedical data across biomedical atlases. Existing image 

mapping techniques have many limitations. Ontology-based 

solutions often lack spatial precision and do not work when 

the images are not annotated with the ontological concepts. 

Image processing-based solutions may fail when the images 

have different underlying morphologies nor when mapping 

involved images with the same morphology but are taken from 
different imaging modalities. This research suggests that a 

new technique should be developed to overcome the 

shortcomings of existing solutions. 
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