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Abstract—This paper proposes an agent model with adaptive 

weight-based multi-objective algorithm to manage road-network 

congestion problem. Our focus is to construct a quantitative 

index series to describe the road-network congestion distribution, 

and use such indexes as weights in the multi-objective algorithm 

to shunt vehicles on those congested links. First, a multi-agent 

system is built, where each agent stands for a vehicle that adapts 

its route to real-time road-network congestion status by a two-

objective optimization process: the shortest path and the minimal 

congested degree of the target link. The agent-based approach 

captures the nonlinear feedback between vehicle routing 

behaviors and road-network congestion states. Next, a series of 

quantitative indexes is constructed to describe the congested 

degree of nodes, and such indexes are used as weights in the two-

objective functions which are employed by the agents for routing 

decisions and congestion avoidance. In this way, our proposed 

agent model with adaptive weight-based multi-objective 

algorithm could achieve congestion distribution evaluation and 

congestion management at the same time. The simulation results 

show that our proposed approach has successfully improved 

those seriously congested links of road-network. Finally, we 

execute our model on a real traffic map, and the results show that 

our proposed model reduce the congestion degree of road-

network, thus have its significant potentials for the actual traffic 
congestion evaluation and management. 

Keywords-adaptive weight; agent model; multi-objective 

optimization; road-network congestion management 

I.  INTRODUCTION  

In the field of Intelligent Transportation System (ITS), 
traffic congestion management has become one of the key 

applications, and has always been a hot topic for green cities. 
For instance, effective management of traffic congestion results 
in an even distribution of traffic on arterial roads, decreasing 
travel and wait times, and reducing vehicle emissions and 
probability of road hazards [1]. Although a wide variety of 
approaches such as physics methods [2, 3], mathematical 
programming methods [4] and adaptive dynamic programming 
[5] have been proposed to improve road-network congestion 
problem, there has been recently an increasing interest in the 
application of agent-based approaches. The autonomous and 
distributed nature of multi-agent system (MAS) makes it 
suitable to capture the dynamic and geographically distributed 
features of transportation system. Using MAS approaches, 
vehicles are defined as agents and traffic congestion is regarded 
as an emergent result of nonlinear feedback between agent 
behaviors and traffic status. Thus, with a bottom-up 
perspective, agent models can relate microscopic vehicle 
routing behavior and macroscopic traffic evolving situation to 
address the real world congestion problem. 

There have been many contributions that apply agent-based 
models to ease the traffic congestion problem. In this paper, we 
divide these approaches into three categories: 

 (1) Infrastructure-based agent approach, which provides 
traffic guidance by regulation of the traffic flow on 
infrastructures such as signals and intersections. For example, 
Hoar et al. build a MAS-based evolutionary algorithm which 
achieves an efficient traffic flow by adjusting the timing 
sequences of the traffic lights. The simulation results show an 
overall decrease in waiting time of 26% for complex routes [6]. 
As some researches attempt to employ machine learning 
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models, Arel et al. present a Q-learning algorithm for multi-
intersection traffic signal scheduling and the simulation results 
show greater reduction of wait times by compared with 
longest-queue-first algorithm [7]. And, Roozemond elaborates 
a multi-layered MAS model to implement urban traffic control. 
The model consists of agents with different roles at various 
levels, where Intelligent Traffic Signaling Agents cooperate 
and coordinate to resolve traffic conflicts by using information 
from Roadside agents [8]. Chen et al. also present an adaptive 
and cooperative traffic light agent model which shows obvious 
reduction of delay time compared with the fixed sequence 
traffic signal control case [9]. Onieva et al. build an agent-
based traffic simulator to study the traffic flow controlled with 
independent agent-based traffic signals, in order to manage 
traffic congestion problem [10]. Besides, Tahilyani et al. 
propose a MAS model which decides route diversion to solve 
the traffic congestion problem by utilizing a cognitive radio 
system for traffic flow information [11].     

(2)Vehicle/Driver-based agent approach, which proposes 
appropriate control measures with an individual-level 
perspective to avoid traffic congestions. Some papers use bio-
inspired techniques such as ant pheromone [12-14], bird 
flocking [15] and honey-bee foraging [16]. For example, Ando 
et al. propose a car agent model which deposits ant pheromone 
based on various semantics and uploads the traffic-related 
information to a probe server, so as to predict traffic congestion 
[12]. And Narzt et al. establish self-organizing congestion 
evasion strategies using ant-based pheromones [13]. Sur et al. 
also build an agent-based model with multi-breeded mean-
minded ant colony optimization for vehicle routing 
management, the results show the vehicle has near uniform 
distribution thus implementing congestion avoidance [14]. 
Besides, Astengo-Noguez et al. set up a bird flocking based 
agent model, where vehicle agents form groups and coordinate 
together to achieve effective optimization of traffic flow [15]. 
And, Wedde et al. develop BeeJamA algorithm for traffic jam 
avoidance based on the analogy of honey-bee foraging, and the 
simulation results show decrease in average travel time and 
traffic density as compared to Dijkstra shortest path algorithm 
[16]. Other contributions are found in the approaches which 
consider driver behaviors for route selection. For example, 
Buscema et al. simulate various scenarios by varying driver’s 
feedback, and the results show decrease in travel time with 
increase in the feedback [17]. Zolfpour-Arokhlo et al. establish 
a multi-agent system which uses Q-learning algorithm to help 
vehicles make route decisions, and confirm the effectiveness of 
the model by case studies on road-network in Malaysia [18]. 
Arnaout et al. also describe an IntelliDriver application for 
reducing traffic congestions using an agent-based approach 
[19]. Ito et al. build an anticipatory stigmergy model for 
decentralized traffic congestion management, and the 
simulation results demonstrate its effectiveness and robustness 
[20]. Desai et al. present a multi-agent based approach for 
congestion avoidance and route allocation with virtual agent 
negotiation, and the simulation results show an improvement 
for travel time as compared to shortest path algorithm [21]. 
And, our group proposes an agent-based model with a multi-
objective optimization algorithm, which considers shortest path 
and congestion avoidance simultaneously for vehicle routing 

selection [22]. The simulation results show an effectiveness of 
our proposed multi-objective routing selection method in 
balancing the road-network congestion distribution.  

(3) Hybrid-perspective-based agent approach, which 
provides traffic guidance by integrating and processing diverse 
information from infrastructure units and vehicle drivers. 
Among these works, Weyns et al. establish a Delegate MAS 
model, where vehicle agents generate exploration ants to 
traverse the road-network and gather route information, and 
then choose a particular route which satisfies the driver 
preference to either shortest travel distance or wait time or 
both. Then infrastructure predicts the queuing time. The 
simulations show better results for reduction in travel distance 
and wait time [23]. Kammoun et al. develop a joint hierarchical 
fuzzy multi-agent model to deal with the route choice problem, 
and the simulation results show better road-network 
management by accounting for environmental factors, vehicle 
states and driver preferences [24]. Yang et al. realize an 
algorithm based on ant colony optimization, using the 
principles of the trunk road loop with high priority and real-
time traffic information, to avoid congested roads [25]. Gao et 
al. also elaborate a multi-layered agent approach which 
coordinates the system optimum for road-network and the user 
optimum for user preference to ensure route selection [26]. 
Vasirani et al. propose a distributed, market-inspired approach 
for intersection management in urban road traffic networks by 
using multi-agent models [27]. And, our group proposes an 
adaptive weight model which constructs a quantitative index 
series to describe the network congestion distribution, and uses 
such index sequence as weights of the two-objective functions 
in [22] for shunting vehicles [28]. The simulation experiments 
on the same predefined road-network topology show obvious 
reduction of congested degree on those seriously congested 
roads compared with the fixed weight congestion control case. 
Such method needs further validation on real road maps. 

Based on the above literature review, an infrastructure-
based agent approach processes global traffic information to 
optimize the macro-level traffic flow, but it does not consider 
driver’s behaviors and preferences. And, vehicle/driver-based 
agent approach takes into account the micro-level vehicle 
control and the driver’s preference, while it does not possess a 
global view on traffic state. Hybrid-perspective-based agent 
approach involves not only global traffic flow information but 
also considers local driver preference for making route 
decisions. In this paper, following our previous work, we 
propose an adaptive agent model to study the road-network 
congestion problem with a hybrid perspective. In our model, 
each vehicle agent makes its routing decision at an individual-
level by a two-objective optimization process: the shortest path 
and the minimal congested degree of the target link. The agent-
based model captures the nonlinear feedback between vehicle 
routing behaviors and road-network congestion states. Next, 
we construct a series of quantitative indexes to measure the 
real-time congestion distribution of road-network at each node, 
and use such indexes as weights in the two-objective functions 
to shunt vehicles on those congested links. An adaptive node 
weight algorithm is proposed based on variations of adjacent 
link’s passage time. In this way, our agent model with adaptive 
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weight-based multi-objective optimization algorithm could 
achieve congestion distribution evaluation and congestion 
management at the same time. At each simulation step, the 
vehicle agents autonomously move towards their destination 
nodes according to the optimization result, through which the 
improvement and control of those congested links of road-
network is realized. Finally, the proposed agent model are 
further validated on a real road map. 

The rest of this paper is organized as follows: Section II 
describes the definition, design concepts and implementation 
details of the agent model, then next, Section III explains the 
simulation experiments and settings based on the different 
simulation purposes; Section IV discusses and analyzes the 
experimental results; and finally, Section V summarizes the 
work of this paper, and presents the future work. 

II. MODEL DESCRIPTION 

Below, we present the agent model following the ODD 
(Overview, Design concepts, Details) protocol proposed by 
Grimm et al. [28]. 

A. Purpose 

In this paper, we describe an agent model with adaptive 
weight-based multi-objective algorithm to improve the road-
network congestion problem in ITS. In our model, each vehicle 
agent considers shortest path and congestion avoidance as two 
objectives in his/her routing selection. We focus on 
constructing a quantitative index series to measure the road-
network congestion distribution with system-level perspective, 
and employ such indexes as weights of the two-objective 
function for agent routing decision at an individual-level. In 
this way, our proposed agent model could achieve congestion 
distribution evaluation and congestion management at the same 
time. The proposed approach may provide a dynamic diversion 
idea from the vehicles perspective with the help of GPS 
devices or Route Guidance System with global traffic 
information of road-network, rather than vehicle shunt in single 
intersections in most applications. 

B. Entities, State Variables and Scales 

The model includes three types of entities: vehicle entity, 
node entity and network link entity, as described in Table I. 

TABLE I.  ENTITIES AND DESCRIPTIONS 

Entities Descriptions Identification 

Vehicle 
The vehicle individuals of the road-

network 
agentId 

Node 
The physical nodes with fixed 

coordinates of the road-network 
nodeId 

Network 

Link 

The links that connect two nodes of 

the road-network 
linkId 

Next, the state variables are explained in order as they 
appear in Table II, which are Source Node (SN), Destination 
Node (DN), Vehicle Path (VP), Node Weight (NW), Link 
Length (LL), Link Situation (LS), Link Congestion Index 
(LCI), and Link Travel Time (LTT). 

TABLE II.  STATE VARIABLES AND DESCRIPTIONS 

Entities Descriptions Identification 

Source 

Node 

The predefined departure node when a 

vehicle is added into the road-network 
startNode 

Destinatio

n Node 

The predefined target node where a 

vehicle supposed to eventually reach 
endNode 

Vehicle 

Path 

A list of nodes where vehicles passed 

by, which describes the movement 

trajectory of the vehicles 

pathMap 

Node 

Weight 

The weight of a node, which reflects 

an integrated congestion impact from 

connected links 

nodeWeight 

Link 

Length 

The physical length of the link, 

approximately calculated by the linear 

distance between two nodes 

linkLength 

Link 

Situation 

The current status of the link, either 

congested or un-congested 
linkSituation 

Link 

Congestio

n Index 

A quantitative indicator used to 

describe the dynamic congested 

degree of the road-network links with 

their link situation congested 

linkCon 

Link 

Travel 

Time 

The passage time of a vehicle passing 

through a link 
linkTravelTime 

Of the eight variables, source node and destination node are 
represented by the node ID, and vehicle path is represented by 
a list of node IDs. Next, we define equations to calculate the 
rest of variables. The first important variable is node weight, 
whose design principles come from the Proportional Regulator 
(P Regulator) of automatic control field [29, 30]. The main 
idea of P regulator is to balance the travel time of different 
ways that connects the same start and destination. 

We use this idea to shunt vehicles to different ways when 
they reach at a node of the road-network. When a vehicle 
passes one node and changes the state of the target link from 
uncongested to congested, or from congested to uncongested, it 
affects all the agents travel time on this target link. We 
therefore propose an adaptive node weight algorithm based on 
iterative operations on the real-time passage time of adjacent 
links, through which the model achieves congestion 
distribution evaluation and congestion management at the same 
time. By assuming the road-network has one node a and a link 
(a, b) connects to it, the node weight is adaptively updated by 
the following equation (1) and (2): 
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where t
aNW  and 1t

aNW are shown by the weight of node a  at 

time step t and 1t respectively, t
baT ),( and 1

),(
t

baT are the 

expected travel time of a vehicle on link ),( ba at time step 

t and 1t respectively, K is the model parameter. According 

to the equations, the node weight is adjusted iteratively 

according to the difference between vehicle’s passage times 

on the target link in two consecutive time steps. As t
aNW  gets 

smaller in magnitude, the more seriously congested degree of 

the node becomes. As the real-time link situation affects the 

agents travel distance at each simulation step, we discuss the 
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calculation of t
baT ),( in two cases. Assume that the travel time 

of an agent on passing an uncongested link is unconT , when the 

simulation proceeds and the link situation changes into 

congested, the expected travel time of the agent on the rest of 

this link is represented by t
conT . The calculation of t

conT is 

presented by equation (3), which originates from the result of 

investigation and regression analysis of a large number of road 

traffic data by the Bureau of Public Roads (BPR) of the US 

[31].  
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where ),( baLL  is the physical length of link (a, b), V is the 

velocity of the vehicle agent, t
baLCI ),( is the congested degree 

of link (a, b), t
baLS ),( is the link status, either congested or 

uncongested, α and β are two parameters of the equation which 

are set to 0.15 and 4 respectively according to the suggestion in 

[31]. Furthermore, assume that a link (a, b) has its largest 

traffic capacity as 
max

),( bae and the current number of vehicles on 

link (a, b) at time step t is t
ban ),( , we then calculate LS and LCI 

of link (a, b) in equation (4) and (5) respectively: 
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C. Process and Scheduling 

At the initial stage of the simulation process, agents are 
added into the road network at different time steps. When the 
simulation proceeds and the agents arrive at a node, they make 
route choices. An agent is removed from the network when it 
arrives at a predefined target node. During the simulation, the 
agent aggregation will cause link congestions and thus affect 
other agents’ route decisions. The following pseudo-code in 
Fig.1 describes the process and the scheduling of the agent-
based model. The details of two sub-models that agent select a 
target link and travel a distance on the link are to be explained 
in section II.F. 

D. Design Concepts 

Basic principles: The general concepts underlying the 
model design come from the urban road-network traffic 
optimization theory proposed by Sheffi [4]. In his theory, 
congestion is one of the most important mechanisms, directly 
affecting the vehicles passage time, and it is associated with the 
number of vehicles through the nodes. With a predefined road-
network structure and traffic data, Sheffi points out that link 
function, represented by the travel time function of the traffic 
flow of network links, is one of the most important factors that 
affect the traffic flow in the urban road-network congestion 
control problem. It reflects the degree of traffic congestion. 
Meanwhile, he proposes a user-equilibrium theory in which no 

 

Figure 1.  Pseudo-code of the agent simulation model. 

driver can shorten his/her journey time by changing the path to 
realize an equilibration state, and such ideal situation is 
difficult to achieve in practice. Furthermore, Sheffi proposes 
several approaches to approximate this equilibrium state; and 
the Label-Connecting algorithm which is a shortest path tree 
approach has been proved as one of the most effective 
methods. According to Sheffi’s theory and methods, we choose 
shortest path and congestion avoidance as two objectives of the 
road-network congestion control and set up our agent model 
with parameters based on his theories. 

Emergence: The traffic flow of the road-network is formed 
and evolved when vehicle agents continuously move toward 
their destinations, and the network links appear different 
congestion degree, especially those show serious congestion. 

Adaptation: In the model, the link selection strategy and the 
node weight are adaptively updated based on the real-time 
congested degree of connected links. 

Objectives: The objective of the model is defined as a 
utility function, which is implemented by operating the agent’s 
link selection process by a two-objective optimization 
algorithm, where shortest path and congestion avoidance are 
considered as two objectives for routing optimization.  

Stochasticity: When the simulation starts, the model 
randomly generates the departure and destination nodes of each 
vehicle agent. With the simulation proceeds, vehicle agents 
which arrive at a node need to determine their next target link 
based on the sub model of link selection. When agents face 
multiple candidate links, a utility function helps them to make 
the link selection decision. The utility function not only 
considers the two main factors of shortest path and congestion 
avoidance, but also takes into account the stochastic 
disturbances like traffic incidents or drivers preferences in the 
real life, which is implemented by Gaussian function. 

Start 

Initialize the nodes and links of the road-network 

for simulation step=1 to MaxSimulationStep 

for agent number=1 to MaxAgentNumber 

if (the simulation step == the time stamp an vehicle to be 

 added) 

add the vehicle to the road-network 

end if 

if (the agent reaches a node) 

if (the agent arrives at its predefined destination) 

remove the agent from the road-network 

else 

the agent selects a target link 

update the agent number and link situation of the  

involved links 

update the node weight based on the link situation 

end if 

else 
the agent travels a distance on the link 

end if 

update the state varibles of the agent 

end for 

end for 

End 
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Observation: The observations from the agent-based model 
are the reduction in Link Congestion Index (LCI) and Link 
Congestion Time (LCT) of congested links, which reflect the 
effectiveness of our proposed agent model and algorithms on 
improving road-network congestion problems. 

E.  Initialization 

For the initialization, the model randomly generates a group 
of vehicle agents with their departure and destination nodes. 
They are gradually added into a predefined road-network at 
different time steps that follow a uniform distribution with 1 to 
50. The weight of each node of road-network is initialized to 1. 
When the simulation proceeds, the weights of some nodes are 
adaptively updated based on equation (1).  In this paper, we 
define those nodes with their weights not equal to 1 as 
congestion feedback nodes. 

F. Sub-models 

Two sub models are additionally defined for the operation 
of link selection and agent travel process. First, we describe the 
pseudo-code of link selection model in Fig.2.  

 

Figure 2.  Pseudo-code of the link selection model. 

As stated in Fig.2, each vehicle agent changes its link 
selection strategies according to his/her real-time congested 
degree of connected links. When multiple links can be selected, 
the agent chooses one based on a utility function. The utility 
function of link (a, b) at simulation step t is given in equation 
(6). 

,)1(** ),(),(),( GaussNWLCIgNWU t
a

t
baba

t
a

t
ba                (6) 

where the first term g(a, b) represents the strength which 

attracts agent moving towards its destination node, calculated 

by Floyd shortest path algorithm[32]; the second term 
t

baLCI ),( reflects the congested degree of link (a, b) at 

simulation step t, calculated by equation (5); and the parameter 
t
aNW  is used as a weight to simultaneously optimize the two 

objectives (the shortest path and the congestion avoidance). 

Furthermore, in order to reflect randomness in agent’s motion, 

we add Gaussian stochastic disturbance as the third term of the 

utility function. We set the two parameters as mean and 

variation of Gaussian function equal to 0 and 1, respectively. In 

the following, we present the pseudo-code of the agent travel 

process in Fig.3. 

G. Evaluation criteria 

In order to compare and analyze the simulation results, we 
define three evaluation criteria: First, the Link Congestion 

 
Figure 3.  Pseudo-code of the agent travel model. 

Index (LCI), which reflects the congested degree of a link at 
different time steps (which is also taken as a state variable 
given in Table II), calculated by equation (5); second, the Link 
Congestion Time (LCT), which is a quantitative indicator to 
describe the regulated congestion time of a link when the 
simulation is terminated, given by equation (7); and third, the 
number of congestion feedback nodes (N_CFN), which refers 
to those nodes with their weights less than 1. As the weight of 
each node is initialized as 1, and such values are updated when 
the congestion situation of connected links change, therefore, 
those nodes with their weights less than 1 indicate a feedback 
to the dynamic congestion situation of road-network.  

ct
st

LCI

LCT

stt

t

t
ba

ba 




1

),(

),(
                            (7) 

In the above equation, st shows the total simulation time 
steps and ct is the sum of the congestion time of link (a, b). We 
summarize the three evaluation criteria in Table III. 

TABLE III.  ENTITIES AND DESCRIPTIONS 

Criteria Description Name 

Link Congestion 

Index 

The congested degree of different 

links 
LCI  

Link Congestion 

Time 

The regulated link congestion time 
LCT  

Number of 

Congestion 

Feedback Node 

The number of congestion feedback 

nodes with their node weight less than 

1  

N_CFD 

III. EXPERIMENTS 

A. Experiment Design and Setups 

In this paper, we conduct three groups of simulation 
experiments to examine the applicability and effectiveness of 
our model in improving the road-network congestion problem. 
The purposes and evaluation criteria of each group of 
experiments are summarized in Table IV.  

To conduct the experiments, we define two types of agents: 
one type of agent is the Floyd agent that uses shortest path 
strategy, and the other agent type is the autonomous agent that 
uses hybrid strategy. Hybrid strategy refers to executing the 
shortest path strategy and the two-objective optimization 
strategy in turn according to the real-time congestion situation. 
The autonomous agent using hybrid strategy adapts its routing 
selection strategies to the real-time congestion environment of 
nearby links. In other words, the agents will use either shortest 
path strategy or the two-objective optimization strategy in link 

Start 

if (the current link situation == uncongested) 

the agent moves forward a predefined distance on  

current link 

else 

calculate the rest of the link distance S to the next node 

calculate the expected travel time texp for passing the rest of the 

link 

the agent move forward a S/texp  distance on current link 

end if 

End 

Start 

if (the node connects to an unique link) 

Choose this link as the target link 

else  if (the link situation on shortest path == uncongested) 

Choose shortest link as the target link 

else 

Calculate the utility values of all connected links 

Choose a link with the minimum utility value as the target link 

end if 

end if 

End 
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TABLE IV.  SUMMARY OF THE PURPOSES AND EVALUATION CRITERIA OF 

SIMULATION EXPERIMENTS 

No. Purpose 
Evaluation 

Criteria 

Group1  
Experi-

ment 1 

Validation of the model on 

congestion evaluation and 

control. 

LCI, LCT, the 

weight 

distribution of 

congestion 

feedback nodes 

Group2 

Experi-

ment 2 

Sensitivity analysis of the 

parameter K on congestion 

control. 

N_CFN  

Experi-

ment 3 

The effect of the number of 

agents on congestion 

control 

N_CFN  

Group3 
Experi-

ment 4 

Verification of the model 

on a real road map 

LCI, LCT, 

N_CFN 

selection, depending on the real-time congested degree of 
nearby links of road-network (See Fig.2 link selection model). 
On this basis, we execute simulation experiments with different 
composition of these two types of agents, and compare the 
simulation results by using the three evaluation criteria in Table 
III. 

Table V presents the different composition of agents in the 
above four experiments. And, the experiments set the default 
value of K equal to 0.2. 

TABLE V.  THE DIFFERENT COMPOSITION OF AGENTS IN THE 

EXPERIMENTS 

No. Agent Composition 

Group1  
Experi-

ment 1 
3000 Floyd vs. 1500 Floyd and 1500 Autonomous. 

Group2 

Experi-

ment 2 
1500 Floyd and 1500 Autonomous. 

Experi-

ment 3 

1500 Floyd and 1500 Autonomous;   

The agent number scales in {1500, 2000, 2500, 

3000, 3500, 4000, 4500}. 

Group3 
Experi-

ment 4 

6000 Floyd vs. 3000 Floyd and 3000 Autonomous 

8000 Floyd vs. 4000 Floyd and 4000 Autonomous 

10000 Floyd vs. 5000 Floyd and 5000 Autonomous 

At the initial stage, the two types of agents travel along the 
shortest routing according to equation (6). When the simulation 
proceeds, some roads become congested, and the connected 
nodes would adjust their weights based on equation (1). Then 
the agent model adaptively shunts vehicles by using such 
weight sequences as weights in a two-objective function based 
on equation (6). In this way, the developed model constructs a 
set of dynamic evaluation indexes for describing the real-time 
congested degree of road-network, and achieving congestion 
reduction based on such index sequences simultaneously.   

B. Experimental Results  

1) Validation of the model on the congestion control 
Given a predefined road-network topology in Fig.4, we 

simulate a road-network consisting of 39 nodes with their IDs 
ranging from 0 to 38, and 146 links represented by a pair of 
nodes. The coordinates of the nodes are defined in the same 
way as in [33].  

The first experiment examines how our model using 

adaptive weight-based two-objective optimization algorithm 

reduces the road-network congestion. We focus on the 

improvements of those congested links. In this experiment, we 

 

Figure 4.  The predefined road-network topology. 

execute trial one with 3000 Floyd agents using shortest path 

strategy, and trial two with 1500 Floyd agents using shortest 

path strategy and 1500 autonomous agents using hybrid 

strategy. We choose LCI and LCT of those congested links as 

the evaluation criteria to measure the simulation results. The 

simulation runs are terminated at step 200 since there were no 

more obvious variations in the simulation results after 200 

steps. 
Fig.5 presents the results of LCI and LCT of all congested 

links in the predefined network by two trials with different 
setup of agents.  

 

(a) LCI 

 

(b) LCT 

Figure 5.  LCI and LCT of congested links under different setup of agents. 
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The results in Fig.5 (a) showed that those seriously 
congested links, like link (7, 13) and (31, 27), had their values 
of LCI decreased from 1.16, 1.15 to 1.02. Other severely 
congested links such as link (31, 33) and (33, 31) had their 
values of LCI decreased from 1.16 to 1.07. Especially, some 
congested links became uncongested, like link (13, 20) and (21, 
27), meanwhile there were new congestions formed in link (27, 
21). Besides, LCI of some links appeared slightly increased, 
such as link (13, 7) and (25, 28). The results in Fig.5 (b) 
showed that most congested links had their LCT decreased, two 
seriously congested links as link (7, 13) and (31, 33) had their 
values of LCT decreased from 130,110 to 18. There also had 
congested links (13, 20), (20, 22) and (21, 27) turned to be 
uncongested, meanwhile new congestion appeared in link (25, 
28).  And, LCT of links (13, 7), (16, 19) and (21,14) appeared 
slightly increased. 

Further, Fig.6 illustrates the weight distribution of 
congestion feedback nodes after applying our proposed agent-
based model with adaptive weight algorithm. It is interesting 
that we find the IDs of congestion feedback nodes just 
corresponding to the end nodes of congested links in Fig.5. 
Especially, the seriously congested links like (7, 13), (31,27), 
(31, 33) and (33, 31), their connected end nodes 7, 31 and 33 
have their weights as 0.068, 0.002 and 0.055, which are much 
smaller than other nodes. 

 

Figure 6.  The weight distribution of congestion feedback nodes. 

2) The Effect of Parameter K and the Number of Agents 

on the Congestion Control 

The second group of simulation experiments includes two 
parts: Experiment 2 conducts sensitivity analysis of parameter 
K on congestion control and Experiment 3 examines the effect 
of the number of agents on congestion control. In both 
experiments, we keep road-network topology as the one in 
Experiment 1.  

First, we execute Experiment 2 for sensitivity analysis of 
parameter K on congestion control. The experiment sets the 
agent-based model consisting of 1500 Floyd agents and 1500 
Autonomous agents, and the values of parameter K changing 
from 0.2 to 2. As the number of congestion feedback nodes 
directly reflects the effect of our agent model on congestion 
management and control, we therefore calculate the number of 
congestion feedback nodes under different K values and 
present the results in Fig.7. 

 

Figure 7.  The number of congestion feedback nodes under different K. 

As shown in Fig. 7, the number of congestion feedback 
nodes was getting smaller with an increasing K. More 
concretely, the value of N_CFN was decreased from 9 (K=0.2) 
to 1 (K=1.45). And, there was no more congestion feedback 
nodes in the network when K was bigger than 1.45.  

Next, we conduct Experiment 3 to examine how the 
number of agents influences the improvement of road-network 
congestion. We first execute eight trials of the simulation 
model with 1500 Floyd agents and 1500 Autonomous agents, 
and the agents are initialized with randomly generated start and 
destination nodes. Fig.8 presents the number of occurrences of 
congestion feedback nodes of the given road-network.  

 

Figure 8.  The number of occurrences of congestion feedback nodes of the 

predefined network. 

As shown in Fig.8, even though the eight trials generated 
the agents with different start and destination nodes, congestion 
feedback nodes were located on some specific nodes 7, 13, 16, 
19, 27, 31 and 33. These nodes appeared 7 or 8 times as 
congestion feedback nodes in eight trials. Of the seven nodes, 
the node 7, 31 and 33 are corresponding to the end nodes of 
congested links in Fig.5. 

Then, we execute Experiment 4 to test our model under 
different number of agents, ranging in the collection of {1000, 
1500, 2000, 2500, 3000, 3500, 4000, 4500}. Fig.9 presents the 
number of congestion feedback nodes after simulation when 
the number of agents scales from 1000 to 4500. As shown in 
Fig.9, the number of congestion feedback nodes increases with 
the number of agents. 
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Figure 9.  The number of congestion feedback nodes under different number 

of agents. 

Further, Fig.10 lists the distribution of number of 
congestion feedback nodes among the 39 nodes of the road-
network. In Fig.10, we find similar results where the congested 
nodes are still concentrated on certain nodes, such as node 7, 
13, 16, 19, 31 and 33. 

 

Figure 10.  The distribution of number of congestion feedback nodes under 

different number of agents. 

3) The effectiveness of the model on a real road map 
Finally, the third group of simulation experiments runs to 

verify the applicability and effctiveness of our agent model on 
a real traffic map. We preprocess the GIS map data of a 
Medium-sized city in China from ArcMap, and get a directed 
graph consisting of 514 nodes and 791 links. First, we examine 
the efficiency of the model under different traffic flows by 
increasing the number of agents. Table VI gives the result 
number of congestion feedback nodes under a growing number 
of agents.  

TABLE VI.  THE NUMBER OF CONGESTION FEEDBACK NODES WITH 

DIFFERENT NUMBER OF AGENTS 

The number of Agents N_CFN 

6000 38 

8000 73 

10000 106 

The results in Fig.7 showed that the number of congestion 
feedback nodes increased from 38 to 106, with the number of 
agents changing from 6000 to 10000. Since the number of 
congestion feedback nodes reflects an ability of the model in 

improving congestion, therefore, such results confirmed the 
efficiency of our model on congestion control. Next, we fix the 
number of agents to 6000, and sort the links by their LCI 
values in a descending order and the top ten links are found and 
summarized in Table VII. 

TABLE VII.  THE LIST OF THE TOP TEN LINKS SORTED BY LCI 

Link Id 
6000 

Autonomous 

3000 Floyd 3000 

Autonomous 

Improvement 

Rate 

(385,386) 1.6546  1.5041  9.09% 

(103,104) 1.6008  1.0440  34.78% 

(56,570) 1.4610  1.1083  24.14% 

(379,380) 1.3823  1.0367  25.00% 

(57,58) 1.3457  1.1128  17.31% 

(258,257) 1.3379  1.0946  18.18% 

(110,109) 1.3359  1.0312  22.81% 

(380,110) 1.2899  1.0279  20.31% 

(378,379) 1.2591  1.0301  18.18% 

(244,243) 1.2560  0.0000  100.00% 

As described in Table VII, nine of the top ten congested 
links had improved their LCI values more than 17%. The most 
seriously congested link (385, 386) had its LCI value improved 
9%, and the congestion in link (244, 243) disappeared. By 
using the two-objective optimization algorithm in our model, 
the average value of LCI of all congested links was decreased 
from 1.1601 to 1.0755. 

Then, we fix the number of agents to 6000, and sort the 
links by their LCT values in a descending order. Table VIII 
lists the top ten links with larger LCT values. 

TABLE VIII.  THE LIST OF THE TOP TEN LINKS SORTED BY LCT 

Link Id 
6000 

Autonomous 

3000 Floyd 3000 

Autonomous 

Improvement 

Rate 

(379,380) 338.6683  165.8784  51.02% 

(380,110) 149.6260  49.3379  67.03% 

(56,57) 130.0289  56.5255  56.53% 

(378,379) 119.6103  85.5013  28.52% 

(57,58) 98.2352  20.0300  79.61% 

(58,59) 60.5380  0.0000  100.00% 

(396,395) 44.8691  19.8438  55.77% 

(52,56) 40.7229  27.3767  32.77% 

(258,257) 38.7987  25.1766  35.11% 

(109,110) 34.1477  28.2182  17.36% 

As shown in Table VIII, most links with bigger values of 
LCT were greatly decreased, such as link (379,380) (380,110), 
(56, 57), (57, 58) and (396,395). The improvement rates of 
these links were over 50%.  Especially, the congestion no 
longer occurs on link (58, 59). By using the two-objective 
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optimization algorithm with adaptive weight in our model, the 
average value of LCT of all congested links was decreased 
from 31.8819 to 16.3685. 

Further, Fig.11 gives the weight distribution of those 
seriously congested links in Table VII and VIII. The black 
dashed line in Fig.10 represents the average weight of all 
congestion feedback nodes of the road-network, which was 
0.3264. According to the results in Fig.10, most nodes had their 
weights much smaller than the average value. Particularly, the 
two end nodes, 379 and 380 that belong to the most congested 
link (379,380), have their weights that are modified to 0.0713 
and 0.1085, respectively.  

 

Figure 11.  The weight distribution of those seriously congested links. 

For a more intuitive display with congestion feedback 
nodes to describe the distribution of congestion, we mark the 
locations of the congestion feedback nodes on the real road 
map in Fig.12. In this figure, the nodes with more dark red 
color indicate smaller values of the weight, which also mean 
more severe congestion of connected roads. 

 

Figure 12.  The distribution of congestion feedback nodes on the real road 

map. 

IV. DISCUSSION 

From the experimental results above, we draw the 
following discussions: 

 (1) In the first group of simulation experiments, the results 
of LCI and LCT showed that our proposed model helped to 
decrease the congested degree of those congested links, 
especially those seriously congested links like (7, 13) and (31, 
33). But the simulation results showed LCI and LCT of some 
links (e.g. (13, 7)) had a slight increase. This exactly explained 
the model effect on vehicle shunting and congestion 
equilibration. Additionally, the achieved adaptive weight 
sequence confirmed that the value of node weights could 
reflect the non-uniform road congestion degree in a 
quantitative way. When the simulation starts, the weight of 
nodes are initialized to 1. At the early stage of the simulation, 
Both Floyd agent using shortest path strategy and autonomous 
agent using hybrid strategy travel along the shortest routing 
according to equation (6). When the simulation proceeds, some 
roads become congested, and the connected nodes would adjust 
their weights based on equation (1) and implement vehicle 
shunt via the two-objective optimization by equation (6). 
During the simulation process, the extremely small weight of 
nodes meant a seriously congested situation with those 
connected links while the nodes with higher values of weight 
approximating to or more than one meant less congestion or 
never congestion. Therefore, the results in experiment one 
showed that our model successfully constructed a new 
quantitative index of nodes for evaluating the real-time 
congestion distribution of the road-network, and use such index 
sequences as weights in a two-objective function for vehicle 
shunt and congestion control simultaneously.  

 (2) The results in the second group of simulation 
experiments showed that the performance of our proposed 
approach was affected by the values of parameter K and the 
number of agents. The result in Experiment 2 found that the 
number of congestion feedback nodes decreased with a 
growing value of parameter K. Such results indicated that the 
congested nodes and related links were also decreased and the 
network congestion was greatly improved. And, the simulation 
results achieved best performance when K equal to 0.2. On the 
contrary, the result that no more congestion feedback nodes 
appeared when K was bigger than 1.45 indicated a threshold 
for K in the process of node weight adjustment. That is because 
too large values of parameter K would lead to an over-
modification of node weight and a coarseness of the congestion 
evaluation. In this case, our model was unable to accurately 
measure the congestion distribution of the road-network. 
Furthermore, the results in Experiment 3 indicated that 
congestion locations of a road-network mainly depended on the 
network topology. Although eight trials of the simulation were 
executed by setting the different start and destination nodes of 
agents, the congestion feedback nodes were mainly located on 
some specific nodes, just like the road-network junction and 
the intersection of the arterial link. The results also showed that 
the number of congestion feedback nodes increased with a 
growing number of agents, which indicated that bigger traffic 
flow would cause more serious congestion status. This shows 
that the node weight affected by the agent quantity to a certain 
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degree. Further, the distribution of congestion feedback nodes 
under different amounts of agent again proved that the 
congestion nodes mainly depended on the network topology. 

(3) The results obtained from the third group of simulation 
experiments showed that the agent model with adaptive 
weight-based two-objective optimization algorithm had 
successfully reduced the traffic congestion on the real road map. 
The increased amount of congestion feedback nodes denoted 
that the performance of the agent model was affected by the 
different traffic scales, and also indicated the effect of different 
traffic scales on the nodes weights. The improvement rate of 
those seriously congested links with higher values of LCI and 
LCT confirmed the shunting effect of our proposed model on 
congestion control. The node weights exactly provided a 
quantitative index for describing and evaluating the network 
congestion distribution with a global perspective. Meanwhile, 
according to the simulated results of distribution of congestion 
feedback nodes on the real traffic map, we found most nodes 
located at the road junction or near the unique road connecting 
the east and west urban area. Because these nodes connected 
traffic arteries, most agents of the simulated traffic system had 
to pass such nodes to go through the regions and finally 
reached their destinations. Although we did not set agents 
according to the real traffic flow in the city map, the simulation 
results reflected the same congested node with the real map in 
actual life. Also, the improvement made by our model on those 
seriously congested links provided a dynamic balancing 
diversion idea from the vehicles perspective, which had its 
significant potentials for guiding actual operation of the 
congestion control. Therefore, the simulation results verified 
the applicability and effectiveness of our proposed model 
executing on the real traffic map. 

V. CONCLUSION 

In this paper, we have developed an agent model with 
adaptive weight-based multi-objective algorithm to manage the 
road-network congestion problem. In this way, a series of 
quantitative index to describe the road-network congestion 
distribution is built. And these indexes are used as weights in 
the multi-objective algorithm of agent-based model to shunt 
vehicles on those congested links. We therefore implement a 
multi-agent system, and execute three groups of simulation 
experiments to examine the applicability and effectiveness of 
our model on improving road-network congestion problem.  

The simulation results show that the model realizes a real-
time road congestion control, thus reduces the road congestion 
and promots traffic capacity of the transport network. 
Especially, the validation of the model with a real traffic map 
of a Medium-sized city in China turned out that our proposed 
model could balance and reduce the congestion in the road-
network. The simulation results also confirmed an applicability 
and effectiveness of the node weight as a new quantitative 
index sequences to describe the road-network congestion 
distribution, and shunt vehicles on those congested roads based 
on that index simultaneously. 

Such a hybrid-perspective-based agent approach based on a 
multi-objective optimization algorithm with adaptive weight 

will have its significant potentials for actual traffic congestion 
control by considering the global congestion distribution and 
the local vehicle routing selection at the same time. With the 
help of GPS devices, the proposed agent model has a 
theoretical value and practical significance for both vehicle 
navigation and route selection used in the field of ITS. In the 
future work, we plan to test the effectiveness and accuracy of 
our model based on an exact traffic flow data. We also consider 
the implementation of this idea to a real world traffic 
environment.   
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