
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1299

Reform Based Version Management System for XML

Data

Sayed MD. Fahim Fahad
Department of Computer Science

and Engineering

Jahangirnagar University

Dhaka, Bangladesh

Md. Abdur Rafi Ibne Mahmood

Department of Computer Science

and Engineering

Jahangirnagar University

Dhaka, Bangladesh

Email : rafisameen2 {at} gmail.com

Mohammad Zahidur Rahman
Department of Computer Science

and Engineering

Jahangirnagar University

Dhaka, Bangladesh

Abstract—XML has become a popular medium to store

data. As there could be multiple versions of an XML

document, users may want to search previous versions,

detect changes in documents and retrieve a particular

document version efficiently and quickly. This paper

proposed an efficient way to manage versions of XML data

that will save both memory space and process time.

Keywords- XML; Version control; Forward delta

I. INTRODUCTION

Version Control is a very necessary and efficient way to

manage any project or system. A version control system (or

revision control system) is a system that tracks incremental

versions (or revisions) of files and in some cases, directories

over time. Collaboration, change management and ownership

tracking are the main reasons for using version control system.

As the use of XML data is increasing because of its’

usefulness and efficiency, many users use XML to store,
update and search data. [6][7][8][9]Many versions of same

XML file exist and the management of each version is a

difficult task. Managing both time and space complexity for

version management is difficult. Many version control system

use more space to reduce time complexity. Here we tried to

handle both space and time complexity. We use “Reform”

process and forward deltas to keep track of the changes. All

the technical terms will be described in the later part of the

paper.

II. RELATED WORKS

In [2], the forward and backward deltas are used to manage

versions. But we used forward deltas to manage versions that

will save memory space and calculation time to retrieve a

version. In [5], the changed objects are added to the new

version and unchanged objects are referenced. This may

become time consuming for a growing system to retrieve a

version from huge file. Time is not constant or predictable.

[1],[3],[4] also discussed about XML version management.

Based on these papers we tried to improve the time and space

complexity for XML version management process. Here we

use “Reform” technique that will regenerate the complete

version after a specific number of versions and store it to new

XML file. This will allow us to retrieve any version of XML

data in a very short time. Forward deltas will save much
memory space. We don’t have to store complete version every

time or backward edit script to regenerate any version.

III. LOGICAL MODEL

In the paper, we will use few technical terms. Here we first

elaborate what these terms actually mean.

A. Forward deltas:

We use forward deltas to keep track of the changes. Here delta

means new child node that contains the updated values of the

original child node of the previous version. A forward delta is

a child node that can be applied to a complete version of a
document to obtain the next complete version of a document.

The structure of the forward delta will be same as the structure

of the child node of XML document for which we are

maintaining our versions. The deltas will be stored at the end

of the latest XML file.

B. Reform and Specific version number:

Our system is a “Reform” based system. The system will

regenerate the complete version of an XML file after a

specific number of versions and store it to a new XML file.

We call this process “Reform”. So at the beginning of the

version management, this specific version number must be

fixed. This will depend on the kind of system that uses the

model. This “specific version number” will give us some

mathematical advantages to perform any operation on the file.

e.g. if the specific version number is 4 then the XML file will

be reformed after every 4th version. This means 5th, 9th and so

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1300

on. But no sub-version like 2.1 or 3.5 will trigger the

“Reform” operation. Users can create any number of

subversions. This will save much memory space because the

system does not have to store a new XML file for every new

version.

Now we will use the model to manage the versions of an

XML file. Initially an XML file will be created to store data.

Let us consider that the user named the file as “abc.xml” and

stores a complete version of XML data. This is the first
version of the file. The file structure is shown below:

<Root>

<Child>

<Status></Status>

<Version></Version>

 <Sub-child > </ Sub-child >

 …

</Child>

...

</Root>

The structure of deltas will be like the child node. The

“Status” and “Version” sub child node will be used for version
control. They will indicate the status and version of the child

node. Now we will use our naming process to make the file

more manageable. But the user of that file may not be needed

to know about that. The new name of the XML file will be

“FileName + (Version/n + 1)” (n = specific version number).

Version indicates the current version.

It may comes to mind that why the naming of the file is

important for version control. As we said earlier the specific

version number plays a crucial role in our model. For any xml

file “abc.xml” the first “n” versions of the file will be stored in
“abc1.xml” (considering specific version number is n). Then

the (n+1)th to 2nth version will be stored in “abc2.xml” file and

so on. Now if we want to search any version of that xml file,

we can use our mathematical equation to find which file

contains that version. We don’t have to check any other file or

database to track that version. E.g. if we search pth version of

“abc.xml” where specific version number is n then it will be in

the “FileName+(((p)/n)+1)” file. This will save much time to

retrieve a version of an XML file.

We will need to use an index structure to maintain the

versions of XML data. The index structure will contain
information like this:

File

Name

Child

node

identifier

Version Initial

version

Status

The “File Name” will contain the name of the XML file.

Every node in the file must be identified uniquely. The node

that uniquely identifies the child node should be used as an

identifier. Version shows when the node was last updated.

Initial version indicates the version when the node was first

introduced. Status shows whether the node is still available or

deleted.

Another file index is needed to that will help us to track

us the latest version and handle reform operation.

File Name Latest Version

Latest version will allow us to know what the latest

version of that file is. This information will help us to decide

whether the file is already reformed or not. E.g if we made a

change to an XML file and that triggers the reform operation

then we have to avoid the reform operation for next changes of

the same version. Latest version will help us to avoid
unnecessary reform operation.

Now we will use “Course syllabus system” to explain our

model. The basic structure for a department is shown below:

 Chairman

 |
 |

………………………………………………………………..
| | |

Academic Academic Academic
Council Council Council

For CSE department Honors degree, The Chairman will

create an XML file to store the syllabus and set the specific

version number for the system. Let’s consider the file name is
“HonorsCSE.xml” and specific version number is 4. Then

academic councilors will create course syllabuses. The

chairman approves them and adds them to the main syllabus.

This will be considered as 1st version of the syllabus. So the

first version of syllabus will be stored in

“HonorsCSE+((1/4)+1)” or “HonorsCSE1.xml” file. The

example structure of the syllabus is shown below:

<Syllabus>

<Course>

<Status></Status>

<version></ version>
 <Name> </Name>

 <CourseID></CourseID>

<Credit></Credit>

<CourseSyllabus></ CourseSyllabus>

<Reference></ Reference >

</Course>

...

</Syllabus>

So the file index will be:

File Name Latest Version

HonorsCSE 1

Now if academic council makes any changes in any of the

courses of the syllabus, the changes will be stored in the XML
as deltas and a new version number will be given to those

delta parts. For example if the academic council changes the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1301

“Reference” of a course then the new child node will be

created for that course and version number and “Reference”

will be changed but all the other sub child nodes will be same.

This delta part will be tracked against the course syllabus that

is changed in the new version. The deltas will be stored at the

end of the XML file. After every fourth version, the syllabus

will be reformed and will generate the latest complete version.

This latest complete version will be stored in a new XML file.

The name of the new XML file will be given by using the

proposed naming technique. For example, if the latest version
is 5 then the model will generate the complete 5th version of

the syllabus and write the syllabus to file “HonorsCSE2.xml”

file where as the 2 comes form ((version=5)/4+1) and set latest

version to 5. The whole process can be expressed as below:

Version 01 = Complete version 01

Version 02 = Version 01 + changes in the Version 01

Version 03 = Version 02 + changes in the Version 02

Version 04 = Version 03 + changes in the Version 03

Version 05 = Reform and generate complete 5th version

and store it to new XML file

Thus the process will continue. We used a course index to

maintain the versions of the XML data. The course index is
shown below:

File

Name

Subject

Name

Version Initial

version

Status

“Subject name” is the unique identifier for this file. All

these information will be used for the operations like insert,

update and delete. The benefit of storing deltas is we don’t

have to store a complete version of a syllabus for each time we

make changes to it. This will allow us to retrieve any version

of the syllabus in quick time. When the user search a version,

we need to find the closest complete version of the syllabus
and then we will be able to rebuild the requested version form

the complete version and the deltas.

IV. OPERATIONS

A. Insert operation:

For insert operation, we will insert the new child nodes

(deltas) at the end of the current XML file that contains the

latest version of the syllabus. The insert operation will force

some changes in the course index. We will set the initial

version and version to the current version and set status to

“current. But if current version!=1 and (current version%n=1

and Latest version%n!=1) then we have to generate the

complete latest version and insert the deltas at the end of the
new XML file. Here n is specific version number. If the

(Latest version < current version) then set “Latest version” to

current version.

B. Update operation:

For update operation, we will search the child node using child

node identifier. Then the new child node will be added to the

end of the XML file and changed the sub child node values

that are updated. Other values will remain unchanged. We will

set course index version value to current version. But if

current version!=1 and (current version % n =1 and Latest

version % n !=1) then we have to generate the complete latest

version and insert the updated deltas at the end of the new

XML file. Here n is specific version number. If the (Latest

version < current version) then set “Latest version” to current

version.

C. Delete operation:

Delete operation is the simplest amongst the operations. This

will only set the status value to “Deleted” and update the

version to (current version-1). This will indicate that the

subject was active till that version.

D. Version retrieval:

To retrieve any version of XML data we need to find which

file contains the version. If we want to retrieve pth version of

the file then by using our equation we can say that it is in

“FileName+((p/n)+1).xml” file. n is specific version number.

This is where our naming process becomes very useful. We

can easily find the required file without even looking in the
database. Now we need to determine the closest complete

version of the XML data. The equation for finding closest

complete version is (((p/n)*n) + 1). So we will use complete

version and the deltas of the complete version to retrieve the

searched version of XML data.

E. Query:

We can use two criteria to query the XML file. We can use

child node identifier and a target version or a target version

number to retrieve a complete version.

Identifier node and targeted version number will return

matched node(s) of that particular version. For this we will use

the information of index structure. First the specific version

will be checked against the initial version of that node. If

initial version <= targeted version then we will check it

against the version. If version<=targeted version and
(version%n!=0) then the node will be found in the

“FileName+((targeted version/n)+1)” XML file. Otherwise if

((targeted version %n)==0) “FileName + (((targeted version-

1)/n)+1)” contains the node. But if (initial version<targeted

version < version) then we have to find the nearest complete

version of the file and related deltas to find the node.

For a specific version of an XML file, we use the version

retrieval algorithm and show user the targeted version of that

file.

F. Change detection:

The users may want to detect the changes of a particular

version. User will provide the version number and the model

will calculate to find the file name that contains that version.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1302

Then the version number will be checked against the

<version> sub-child node. When model finds a match, it will

return the child node. The whole file will be searched to detect

all the changes.

V. ALGORITHMS

Insert (node, ver, LatestVersion)
1. //ver indicates the current version
2. //n indicates specific version number
3. if(ver!=1 && ver%n==1 && LatestVersion%n!=1)
4. Reform(ver)
5. insert node at the end of the file
6. else
7. insert node at the end of the file
8. initial version = ver; version = ver;
9. if(LatestVersion < ver)
10. LatestVersion = ver

Update (node, ver, LatestVersion)

1. if(ver!=1 && ver%n==1 && LatestVersion%n!=1)
2. Reform(ver)
3. insert the updated node at the end
4. else
5. insert the updated node at the end
6. version = ver;
7. if(LatestVersion < ver)
8. LatestVersion = ver

Delete (node)

1. Find the node from the latest version file
2. set status to “Deleted”

Reform (ver)

1. Use (ver-n) to (ver-1) versions to generate the
complete version ver

2. Store new complete version ver to new XML file

VersionRetieval (ver)
1. if(ver % n == 1)
2. ver is complete version
3. return complete version ‘ver’
4. else
5. closest complete version number =((ver/n)*n)+1
6. V = store closest complete version
7. find deltas of (v+1) to (ver) versions
8. use v and deltas to generate the complete version

ver
9. cver = store the complete version
10. return cver

VI. PERFORMANCE

 At the beginning we said that our model will handle

both space and time complexity. The model use deltas to store

the changes and an index structure to track it. We don’t need

to store the complete version or forward and backward deltas

to manage versions of the file. As deltas will be stored at the
end of the current XML file, we don’t have to create a new

XML file every time to store new version of XML data. This

will save lots of space. Now if we store all the deltas in the

same file it may perform better for smaller versions but it is

not efficient for long term management. When versions

increase with time it will become more difficult to track and

retrieve a version form a single file. To overcome that problem

we use “Reform” operation after a specific number of

versions. This will regenerate the complete version and store it

to a new XML file. Every XML file contains the same number

of versions of the XML data. So, searching version 2 or
version 20 will take almost same amount of time. On the other

hand, searching a specific node of a specific version, we don’t

have to generate the whole version of that file. Index structure

will help us to find that node easily. This will save much

process time and make the system more predictable.

VII. EXAMPLES

Example 01(insert operation):

If we insert 4 subjects in four consecutive versions then the

state of the course index will be:

Degree Department Subject

Name

Version Initial

version

Status

Honors CSE DLD 1 1 Current

Honors CSE Database 2 2 Current

Honors CSE OOAD 3 3 Current

Honors CSE Algorithm 4 4 Current

So the first 4 versions will be stored in “HonorsCSE1.xml”

file for the syllabus will look like:

<Syllabus>

<Course>

<Status>Current</Status>
<version>1</ version>

 <Name> DLD</Name>

 <CourseID>101</CourseID>

<Credit>2</Credit>

<CourseSyllabus>Syllabusnew</

CourseSyllabus>

<Reference>Book01</ Reference >

</Course>

…

</Syllabus>

Example 02(update operation):

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1303

If we update DLD and change the Credit from 2 to 3 and set

the new version number to 5 and (5%4==1). So the “Reform”

operation will be performed and a complete 5th version will be

stored in the “HonorsCSE2.xml” file. So the new course index

will look like:

Degree Depart

ment

Subject

Name

Version Initial

versio

n

Status

Honors CSE DLD 5 1 Current

Honors CSE Database 2 2 Current

Honors CSE OOAD 3 3 Current

Honors CSE Algorithm 4 4 Current

So “HonorsCSE2.xml” file for the syllabus will look like:

<Syllabus>

 <Course>

<Status> Current </Status>

<version>2</ version>

 <Name>Database</Name>

<CourseID>102</CourseID>

<Credit>3</Credit>

<CourseSyllabus>Syllabus DB</ CourseSyllabus>

<Reference>Book02</ Reference >

 </Course>

 <Course>
<Status> Current </Status>

<version>3</ version>

 <Name> OOAD</Name>

<CourseID>103</CourseID>

<Credit>3</Credit>

<CourseSyllabus>

SyllabusOOAD

</ CourseSyllabus>

<Reference>Book 03</ Reference >

 </Course>

 <Course>
<Status> Current </Status>

<version>4</ version>

 <Name> Algorithm</Name>

<CourseID>104</CourseID>

<Credit>3</Credit>

<CourseSyllabus>

Syllabus Algorithm

</ CourseSyllabus>

<Reference>Book 04</ Reference >

</Course>

<Course>
<Status>Current</Status>

<version>5</ version>

 <Name> DLD</Name>

 <CourseID>101</CourseID>

<Credit>3</Credit>

<CourseSyllabus>Syllabusnew</

CourseSyllabus>

<Reference>Book01</ Reference >

</Course>

</Syllabus>

Example 03(delete operation):

If we delete Database from the syllabus then the status of the

Database will be set to “Deleted” and version to 5 as the

current version is 6. Others will remain unchanged. So the
new course index will look like:

Degree Depart

ment

Subject

Name

Versi

on

Initial

version

Status

Honors CSE DLD 5 1 Current

Honors CSE Database 5 2 Deleted

Honors CSE OOAD 3 3 Current

Honors CSE Algorith

m

4 4 Current

So “HonorsCSE2.xml” file for the syllabus will look like:

<Syllabus>

<Course>

<Status> Deleted </Status>

<version>5</ version>

 <Name>Database</Name>

<CourseID>102</CourseID>
<Credit>3</Credit>

<CourseSyllabus>

Syllabus database

</ CourseSyllabus>

<Reference>Book02</ Reference >

</Course>

…

</Syllabus>

Example 04(Version Retrieval):

If we want to retrieve the version 6 for the CSE Honors then
we will find it in “HonorsCSE2.xml” file (using (ver/n) + 1

where ver=6 and n=4).

Here closest complete version = ((ver/4) * 4) + 1 = ((6/4)*4)

+1 = 5

So we will use complete version 5 and deltas of version 6 to

generate complete searched version 6. Now complete version

6 will look like:

<Syllabus>

<Course>

 <Name> OOAD</Name>
<CourseID>103</CourseID>

<Credit>3</Credit>

<CourseSyllabus>

Syllabus OOAD

</ CourseSyllabus>

<Reference>Book 03</ Reference >

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1304

</Course>

<Course>

 <Name> Algorithm</Name>

<CourseID>104</CourseID>

<Credit>3</Credit>

<CourseSyllabus>

Syllabus Algorithm

</ CourseSyllabus>

<Reference>Book 04</ Reference >

</Course>
<Course>

 <Name> DLD</Name>

 <CourseID>101</CourseID>

<Credit>3</Credit>

<CourseSyllabus>Syllabusnew</

CourseSyllabus>

<Reference>Book01</ Reference >

</Course>

</Syllabus>

VIII. CONCLUSION

Handling both space and time complexity is a big performance

issue for any model. In our model we show an efficient way to

manage multiversion XML data that can handle both space

and time complexity by using forward deltas and performing

“Reform” operation. Query multi version XML data becomes

efficient as we don’t have to regenerate every version.

REFERENCES

[1] Amélie Marian, Serge Abiteboul, Laurent Mignet,

“Change-centric Management of versions in an XML

warehouse”, 2001

[2] Raymond K. Wong and Nicole Lam, “Managing and

Querying Multi-Version XML Data with Update Logging”,

2002.
[3] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo, “Copy-

Based versus Edit-Based version Management Schemes for

Structured Documents”

[4] S-Y. Chien, V.J. Tsotras, and C. Zaniolo, ”Version

Management of XML Documents”, WebDB 2000 Workshop,

Dallas, TX, 2000.

[5] Shu-Yao Chien, Vassilis J. Tsotras, Carlo Zaniolo,

 “Efficient Management of Multiversion Documents by Object

Referencing ”, 2001.

[6] XML:DB Initiative for XML Database. (http://xmldb-

org.sourceforge.net/)

[7] XML Databases - The Business Case.
(http://www.cfoster.net/articles/xmldb-business-case/)

[8]Simon st.Laurent, “Why XML?”,

(http://www.simonstl.com/articles/whyxml.htm)

[9] Bill Trippe and Dale Waldt, “Using XML and Databases”,

2008.

