
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1356

Guidelines for Designing Reusable Software

Components

Abstract— Software component reuse is of obvious

importance to the software engineering process and is

increasing in prominence in enterprise software development

nowadays. However, standard practices for designing

reusable software components are lacking in many software

development houses, as their reuse activities are either done

in an ad-hoc manner at the very small scale or as part of a

software production line. This paper discusses the key

characteristics of reusable components and proposes

guidelines for deriving the design of reusable software

components.

Keywords--- software repository, software components,

interface, design, verification.

I. INTRODUCTION

Component reuse is an old paradigm that has been commonly

exploited in many different professions. In car assembly lines, for

example, motors, body parts and many other components are

reused from one model to another. Rarely are new parts built

from scratch. Electronic engineers assemble their integrated

circuits from resistors, transistors, diodes and many other

reusable components. They simply search for the required

component on the corresponding data sheets that explain the

detailed specification of each type of component so that they can

reuse them.

In software, the concept of software reuse has existed since the

beginning of programming, as programmers reuse algorithms,

sub-routines and pieces of code from previously created

programs. The idea of reuse in software was first formalized by

McIlory [13], who emphasized the need to componentize

software systems. So, applying McIlory’s idea led to thoughts

about building software systems in a similar manner to building

hardware systems (e.g. electronic circuits). Later on, more

advanced research work emerged that discussed reuse and its

possible directions, emphasizing the significance of reuse

[14,16]. Nowadays, reuse has become one of the standard

paradigms that most leading software development vendors, such

as HP, IBM and Motorola, practise in their production lines, and

many others have reported successful experiences with applying

reuse in their software development projects, such as the

examples provided in the C.R.U.I.S.E. book [1].

Software reuse is a process in which organizations describe a set

of systematic operations to generate, organize and locate reusable

components for future development. When software reuse is

discussed, two main techniques are commonly recognized,

namely, developing with reuse and developing for reuse. The act

of classifying and searching for software components belongs to

the former technique, while the act of designing and developing

components is the core of the latter technique. In fact,

development for reuse is a prerequisite for development with

reuse, as one cannot reuse a component if it is not available in

the first place. However, a commonly accepted standard for

designing reusable software components seems to be

unrecognized widely until now. We believe that most of the work

is done either in an ad-hoc manner for in-house development or

as part of software production lines for enterprise-level

development. Thus, our main focus in this paper is to discuss the

complexity of development for reuse and to propose guidelines

for potential directions towards standardizing this technique.

II. SOFTWARE COMPONENTS

‘Software component’ is a term that has various definitions in

the literature, in that there is no single accepted definition of the

term yet available. The following descriptions are the most

prominent ones within the software industry. Brown and Wallnau

[2] described components as nearly independent and replaceable

parts of a system that satisfy some functionality in the context of

a well-defined architecture. The component can be bound

dynamically and accessed through a well-defined interface at

run-time. Szyperski et al. [3] described a software component as

a unit of composition with a specified interface and explicit

context dependencies. The component can be deployed

independently and subject to composition by a third party. Meyer

[4] described a software component as a software element that

can be used by other software elements (e.g. clients), possesses

an official usage description and is not tied to any fixed set of

clients. Heineman and Councill [5] described a component as a

software element that conforms to a component model and can be

deployed independently and composed according to composition

standards without modifications. Yang and Ward [6] described a

component as a coherent and configurable package that is

available independently of the application in which it has been

used and with a well-defined interface that can be used in

Basem Y. Alkazemi
Collage of Computer and Information

Systems

Umm Al-Qura University

Makkah

Saudi Arabia

Email: bykazemi {at} uqu.edu.sa

Mohammed K. Nour
Collage of Computer and Information

Systems

Umm Al-Qura University

Makkah

Saudi Arabia

Abd-El-Kader Sahraoui
CNRS, LAAS,7 avenue du Colonel

Roche;

Univ de Toulouse, UTM, LAAS, F-

31100 Toulouse

France

mailto:bykazemi@uqu.edu.sa

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1357

different contexts to interact and communicate with other

components to form a system. Brown and Short [7] characterized

a component as “…an independently deliverable set of reusable

services”. Hopkins [8] described a component as a physical

package of executable code that exhibits a well-defined interface.

Our view of software components is that components are just

parts that fit into a system in order to extend its functionality.

They must exhibit characteristics through their interfaces to

facilitate incorporation into systems and also for identifying them

for reuse. We have adopted a very general model of the terms

‘system’ and ‘component’: a software system is composed of a

number of software components, each of which may of course be

a system in its own right; and a system may subsequently be used

as a component in another system. A system defines a number of

characteristics that it requires components to match. Components

exhibit a number of characteristics by which they can be

identified as reusable candidates in a system. A component might

be complex or atomic. A complex component is one that is

composed of a number of sub-components, while an atomic

component is one that cannot be decomposed any further into

smaller components. Sub-components represent the internal

dependencies that a component needs to work (e.g. a custom

library). A component can be considered reusable to a system

developer only if it provides the required functionality expected

by the developer; otherwise it will be of no use to them. The

functional specifications of components are described via their

corresponding interfaces, for example, a Java interface or an

XML file as in web services in the form of WSDL. We consider

this type of interface as the functional interface of a software

component. It simply tells us what services a component can

provide. There is another type that is very important to

component reusers in order to make sure the found component

can be deployed and work correctly in their system. We refer to

this type as the architectural interface of a software component

[19]. This interface tells us how to get at a component’s

functionality. A simple example of part of an architectural

interface for a source code component is the programming

language in which it is written; a C++ class will not fit into Java

source code due to the differences in their formats. Another

characteristic might be whether a Java class is thread safe or not.

Indeed, object-oriented languages such as Java provide a

particularly rich environment for software component (i.e. class)

reuse, with conventions being defined for assisting class reuse.

JavaBeans and Enterprise JavaBeans are examples of a

component’s architectural types (i.e. component models), and the

definition of what is actually required in a component is the

information to be identified in an architectural interface. An

architectural type defines the values of the characteristics

identified by an architectural interface that, if matched by a

component to what a system requires, then the component can fit

architecturally into that system. Figure 1 illustrates a fine-

grained view of the system model describing the relationship

between an architectural type and an architectural interface.

In Java, the language features of ‘interface’ and ‘abstract class’

can be used to define (and check) conformance to a particular

architectural interface, although naming conventions are also

used. So, if a system requires components to implement a method

called “public void run()”, then all components must

define this method in order to fit into that system. Reusers can

refine their search criteria by providing the definition of the

architectural type that their system requires. For example, if a

developer wants to reuse a “parser” component that fits into an

EJB-based system, then part of the search criteria can be refined

by providing the necessary lifecycle methods that an EJB

architectural type defines.

System/

Component

Require
/Exhibit

Architectural

Type

D
ef

in
e

Characteristics
Architectural

Interface

External

Interface

Has

C
om

po
se

d

of

Identify

Is an in
stance of

Figure 1. Fine-grained ontology of the system model

III. SOFTWARE PRODUCT LINES

The software product lines (SPLs) approach has become the de-

facto standard nowadays among the software engineering

community as the most effective way to practise software reuse

[9]. The idea of software product lines was mainly derived from

the need to develop several software products that share some

common behaviour. Organizations that are practising the product

line approach have identified two development roles:

 Domain engineering: The term ‘domain’ is used to denote or

group a set of systems or functional areas that exhibit

similar functionality. It is concerned with the development

and maintenance of the shared components across a product

line.

 Application engineering: This area is concerned with the

development of products in the product line using the shared

components, or component libraries [15].

In fact, domain engineering activities are linked to the

development for reuse technique, while application engineering

is related to the development with reuse technique discussed

earlier.

Typically, every organization that applies the product line

approach should have their own repositories that store the

desired reusable components that belong to their development

context, as this can reduce the time spent searching for a

component and make it easier to locate the desired components.

Also, because the developers know exactly how their repository

is structured, they can know precisely how to find what they

want. However, there might be some occasions where developers

cannot find the desired components in their repository. So, they

could develop them from scratch or purchase them from external

vendors, and then populate them in their repository for future

reuse.

IV. SERVICE ORIENTED ARCHITECTURE

Service-oriented architecture (SOA) is an architectural style

whereby software components are deployed as services.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1358

Theoretically, the main distinguishing characteristics between

components and services in the context of SOA are in the types

of interfaces they exhibit. Components define two types of

interfaces, as we described in the previous section: functional

and architectural. Services in SOA are functional units that

respond to requests regardless of any architectural

considerations, assuming that the architectural interfaces are

fixed among an organization or a production line. So, services

communicate with each other via a predefined protocol of

interaction, such as JMS, SOAP, IIOP or RPC, whereas

components might comply with different architectural

characteristics than that of a system, interacting successfully

through middleware.

In many software development organizations, the SOA style is

favoured over component-based development due to its flexibility

to integrate various types of systems by means of an enterprise

service bus (ESB) [10]. However, this approach has its own

drawbacks (as described in [11]) with respect to the services

register, discovery, binding and execution. We are going to give

broad guidelines for designing reusable components in general,

regardless of the SOA consideration, as we believe services are a

sub-set of components.

V. DESIGN CONSIDERATIONS FOR

BUILDING REUSABLE COMPONENTS

As we described in section 3, a reusable component is one that

provides the required functional interface needed by a developer.

In order to reuse the component smoothly, the component must

comply with the architectural interface required by the system to

be developed. Based on that consideration, we categorize the

guidelines into functional and architectural characteristics. We

will provide our proposed guidelines on the fly while discussing

the different characteristics.

The functional characteristics that a designer needs to consider

when building reusable components are:

 Generality: It is commonly known that component

functionality is the key driver that influences any reuse

activity. More general functionality might lead to more

potential for reuse in a wider range of problem domains. For

example, a spell checker is a parameterized general purpose

component that can be plugged into many word processers.

However, the relationship between generality and

reusability is not always proportional, as too much

generality might require unnecessary business logic to be

incorporated into the system to be developed, which may

negatively impact the execution performance. So, there is a

trade-off between component generality and the degree of

reusability, which the component designer needs to decide

upon. We believe that general components should represent

the common business logic identified from domain

engineering activity. Thus, designers can decide whether a

component is reusable in one problem domain or might be

reused across different domains.

 Granularity: Component granularity can range from fine-

grained to coarse-grained components. In its simplest form,

a component can be represented as a simple method or

procedure that can be reused in a specific programming

language. A more advanced form of a component can be

denoted in classes and packages of classes, whereby an

entire set of classes might be reused as libraries for system

development. Still, this form of components is restricted for

reuse in the scope of programming languages with some

exceptions to Java, where it can communicate with non-Java

libraries through JNI. A further more complex component

can be represented as an entire framework, whereby a

developer can reuse and extend its functionality. This is the

most common type of reuse nowadays among software

development organizations; it is very rarely found that an

enterprise system is built from scratch. The most complex

form of components’ complexity is represented in an entire

application that might be reused and customized to fit

business needs. This practice is common among solution

providers, e.g. Oracle, Microsoft and other large

corporations. These companies provide solutions to

customers and customize their systems as per their

requirements. The common levels of granularity are

illustrated in Figure 2 as layers of potential components. A

component designer needs to identify the level of granularity

their component has in order to limit or widen its reuse

possibility. We believe that overly fine-grained components

might not reflect the correct architecture of a system, as the

small components represent the design. Moreover, network

traffic might be considerably increased. An overly coarse-

grained component, on the other hand, might greatly impact

the complexity of the component and, subsequently,

increase the maintenance overhead.

Platform

Framework

Application

Plug-ins

System

R
eusable

C
om

ponents

Figure 2. Scope of reusable components

On the other hand, the architectural characteristics that a

designer needs to consider when developing reusable

components are:

 State: Software components have different states that they

can go through during their execution. Each component

model defines different interfaces to manipulate their

respective states. For example, Java Applet must implement

the following methods:
Public void init();

Public void start();

Public void stop();

Public void destroy();

These methods define the different states that an Applet

component can have. Thus, a component designer needs to

define a required interface that captures the complete

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1359

lifecycle of their component’s states and needs to describe

the interface explicitly in the attached documentation.

 Entry point: This is commonly known among the software

architecture community as a “port”. The entry point is the

first block of code that should be invoked to initialize a

component. Some components (i.e. class-based components)

may provide special methods that must be executed to

provide initialization, while others (i.e. framework-based

components) may require the presence of special tools or

files for their initialization. For example, a standalone Java

application must have a method called “public static

void main()” to be initialized, while an Android plug-in

can be initialized by reading a file called “plugin.xml”

with the presence of a method called “public

abstract int getItemId()”. So, a component

designer must decide about the type of component needed (a

class-based or framework-based component) and

consequently define their entry point.

 External dependencies: A software system may require its

composing components to use dependencies that it provides

for them to fit into the system. For instance, a Java system

requires its composing components (i.e. Java classes) to use

a library called “java.io” to achieve the basic input and

output functionality. Also, an Android system requires its

components (i.e. plug-ins) to use a plug-in called

“org.Android.osgi” to allow the system to control

their execution. So, components must use the external

dependencies that are provided by a system in order to be

integrated successfully into the system. A component

designer must define the dependencies that should be

packaged and delivered with the component itself and also

explicitly define the required dependencies to be provided

by the system by means of an interface.

 Data exchanging model: After a component is initialized, it

will be ready to receive data for processing and sending out.

The mechanism of handling data must be defined according

to the requirement of the system under development in order

to avoid potential mismatches. For example, a component

that receives data via parameters may not fit into a system

that requires their components to read data input from a file.

Both the system and the components must agree upon a data

exchanging model. So, a component that employs the push

model will not fit into a system that assumes its components

exchange data according to the pull model. Therefore, a

designer must precisely define an interface for describing

the data exchanging model of the component.

 Control type: The way control is exchanged can differ from

one component to another. One component may synchronize

its execution with a system, so the component can return

control to the system upon the completion of its execution.

Another component might execute asynchronously with the

system. Thus, identifying the different mechanisms of

control flow is necessary for reusing components

successfully in a system. It is the role of a component

designer to define the control type.

These characteristics capture the most significant design

considerations that component designers need to address. There

are some usability aspects that can also contribute to component

reusability. However, we believe that a complete and correct

documentation manual can be sufficient to enhance component

usability and comprehensibility. Other reusability facilitators

such as security are also of importance to consider in order to

gain reusers’ trust. Component security is significant in the

context of COTS components, which reusers might need to

purchase from vendors. However, we believe this characteristic

is not a big concern within a single production line as it should

be established as part of the security standards; hence it is

omitted in this paper.

VI. REPOSITORY SYSTEM FOR REUSABLE

COMPONENTS

In order to standardize the development of reusable components,

we have proposed a prototype of a repository system to automate

the development of components’ architectural interfaces that

represent only one dimension to be considered when developing

reusable components, as discussed earlier. Figure 3 depicts a

prototype of a repository system design to support the

development of reusable components. The repository system is

composed of several components, such as refactoring tools,

classification scheme, matching tools and database storage. The

core elements of the repository system design that directly affect

the development of architectural interfaces are the classification

scheme and the refactoring tool. The matching tools are,

somewhat, supporting mechanisms.

Matching

Tool

Re-factoring
M

o
d

if
y
\

E
x
tr

a
c
t

Send Data

DB

S
to

re

Provider

Matching

Tool

Developer

Send Data

Deliver

Classify

Doc

Doc

Doc

Classification

scheme

Find

Deposit

Retrieve

Admin

Maintain

Figure 3. Prototype of repository system design

The repository system should support three different views:

1. The provider’s view: This view is concerned with the source

code provider – a developer or another repository system.

2. The developer’s view: This view is concerned with

matching, or refactoring, what is inside the repository to fit

the reuser’s needs, based on satisfying the required

architectural interface.

3. The admin’s view: This view is concerned with ensuring the

flexibility of the whole system by allowing new categories

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1360

(i.e. user-defined architectures) to be added to the

classification scheme

Briefly, the envisaged operation of the repository is as follows.

When a software system is deposited in the repository, the

characteristics of its components are identified and matched

against the definitions of various architectural types available in

the classification scheme. Hence, the architectural types defined

by the admin in the classification scheme will permit that

software to be automatically analysed to identify its architectural

type and hence be classified. The overall architecture of that

deposited system can be identified; various components within

the system will also be identified. As a simple example, the

classes within a Java application might be identified as

conforming to the Java Session Bean architectural type and can

be identified and classified as such. A developer can search for

components based on the architectural type definition that his

system requires together with free-text searches for functionality.

Searching for a Java Session Bean component can show all of

those in the repository, but the repository may also be able to

refactor other components to offer to the developer. For example,

a simple Java class could have the required Session Bean

methods added (or a wrapper class formed) by the refactoring

tool. Although such a refactored class would not be complete and

might require additional modifications by the developer, this

would still offer a more complete solution to the reuser’s needs

than the current repositories.

It is important that a classification scheme is not closed and that

developers (and providers) can identify and define new

architectural types to be supported by the repository. For

example, the MVC (model-view-controller) design pattern is

often informally used in appropriate applications. A repository

user might wish to define the architectural types of these parts to

permit components to be interchanged. Utilizing the concept of

architectural interfaces in the design of the repository will permit

such interfaces to be defined by the user.

VII. PROVISIONAL EXPERIMENTATION

The notion of an architectural interface represents a key aspect in

the design of reusable components. As a result, our initial

evaluation was concerned with examining the soundness of the

architectural interface. We have limited our study to the Applet

architectural type to examine the soundness of the approach at

this stage. The experiment aimed at examining whether

components can be identified as conforming to the Applet

architectural type based on an XML description provided for the

Applet architectural type. We developed a prototype of an XML-

based specification language called ArchInt [12] to represent

components architectural characteristics. At this early stage, the

ArchInt specification captures only method signatures,

dependencies (external/internal), and inheritance relationships.

We applied ArchInt to define the Applet architectural type in this

experiment, as displayed partially in Figure 4.

Figure 4. Partial listing of Applet architectural type

specification

We have built a tool called ArchIntParse in Java language to

automate the checking of software components against an

architectural description. About 500 random instances of Java

components were selected from Sourceforge.net to be examined

by the tool.

All the components were examined by the ArchIntParse tool and

the results were as follows. The tool identified 23 components as

conforming to the Applet architectural type, while the remaining

components did not. In order to evaluate the validity of this

result, all the 23 components were inspected by hand in order to

examine if they really satisfied the Applet characteristics. We

found that all the 23 components did conform to the Applet

specification. We also examined the remaining components that

our tool had not identified as Applets and we found that 6

components satisfied the specification of the Applet architectural

type and the remaining 471 components were not Applets at all.

This result indicates that our approach can successfully identify

components if they exactly match the full characteristics of an

architectural type. The experiment also revealed that partial

conformance is not supported by the current architectural

interface paradigm, and that was the reason these components

were not identified by the tool.

VIII. CONCLUSION

Reusable components are valuable assets that can considerably

reduce development costs and time to market. However, finding

appropriate reusable components is one of the key hindrances to

exercising reuse. This is attributed to the lack of standard design

practices that help designers to not only focus on the functional

aspects of their components but also the architectural aspects, in

order to enhance the reusability of their components. We

proposed a set of guidelines that touch upon the principal design

considerations for building reusable software components. The

proposed guidelines were then applied to check some of the

characteristics of software components in order to identify them

as potential reusable candidates. Apparently, the verification

process of software components has been done successfully. We

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1361

believe the verification can be generalized further to cover

components certification for real-time systems [18].

Our planned future work is to utilize the repository system

design to develop a general purpose verification model that is not

limited only to code artefact but can also consider traceability

models in order to define reusable contexts. The essence of the

approach is to enable verifying components compatibility from

requirements to implementations through a significant

traceability model [17]. The traceability will not be restricted to

simple syntactic matching but also components' semantic

considering system context as additional verification criteria, and

hence verification ensures the coverage of various artefacts from

requirements to code components.

REFERENCES

[1] Almeida, E., Alvaro, A., Garcia, V., Mascena, J., Burégio,

V., Nascimento, L., Lucrédio, D. and Meira, S., 2007,

C.R.U.I.S.E. – Component Reuse in Software Engineering ,

C.E.S.A.R. e-book.

[2] Brown, A. and Wallnau, K., 1998, The Current State of

CBSE. IEEE Software, 15(5): pp. 37-46.

[3] Szyperski, C., Gruntz, D. and Murer, M., 2002, Component

Software – Beyond Object- Oriented Programming. 2nd

edition, Addison-Wesley (ACM Press),

[4] Meyer, B., 2003, The Grand Challenge of Trusted

Components, in 25th International Conference on Software

Engineering (ICSE ‘03), IEEE Computer Society.

[5] Heineman, G. and Councill, W., 2001, Component-Based

Software Engineering: Putting the Pieces Together, Addison

Wesley,.

[6] Yang, H. and Ward, M., 2003, Successful Evolution of

Software Systems, Artech House Publishers,

[7] Brown, A. and Short, K., 1997, On Components and

Objects: The Foundations of Component-Based

Development, in Proceedings of the 5th International

Symposium on Assessment of Software Tools (SAST ‘97).,

IEEE Computer Society.

[8] Hopkins, J., 2000, Component Primer. Communications of

the ACM.. 43(10): pp. 27-30.

[9] Bosch, J., 2001, Software Product Lines: Organizational

Alternatives, in Proceedings of the 23rd International

Conference on Software Engineering, IEEE Computer

Society Press. Nov., pp. 91-100.

[10] Chappel, D., 2004, Enterprise Service Bus: Theory in

Practice, O'Reilly Media, 2004.

[11] Zhu, H., 2005, Building reusable components with service-

oriented architectures. Information Reuse and Integration

Conf., pp. 96-101.

[12] Alkazemi, B.Y., 2011, A Precise Characterization of

Software Component Interfaces, Journal of Software(JSW),

Mar, pp. 349-365.

[13] McIlroy, 1968, M.,Mass Produced Software Components. In

Software Engineering: Report on a Conference by the NATO

Science Committee.NATO Science Affairs Division, pp.138-

150.

[14] Mili, H.; Mili, F.; Mili, A., 1995, Reusing software: issues

and research directions, IEEE Transactions on Software

Engineering, Aug, pp.528-562.

[15] Frakes, W.B.; Pole, T.P., 1994, An empirical study of

representation methods for reusable software components,

IEEE Transactions on Software Engineering, Aug, pp.617-

630.

[16] Frakes ,W. B., and Kang ,K. C., 2005, Software reuse

research: status and future, IEEE Transactions on Software

Engineering, Aug, pp. 529-536.

[17] Sahraoui, A.E.K, 2005, Requirements Traceability Issues:

Generic Model, Methodology And Formal Basis,

International Journal of Information Technology and

Decision Making, Jan, pp.59-80.

[18] Krichen , M. and Tripakis, S., 2009, Conformance Testing

for Real-Time Systems. In Formal Methods in System

Design, June, pp. 238-304.

[19] Alkazemi, B.Y., 2009, Exploiting the Architectural

Characteristics of Software Components to Improve

Software Re-use, PhD thesis, School of Computing Science,

(Newcastle University, U.K)

http://www.informatik.uni-trier.de/~ley/db/journals/ijitdm/ijitdm4.html#Sahraoui05
http://www.informatik.uni-trier.de/~ley/db/journals/ijitdm/ijitdm4.html#Sahraoui05

