
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1382

Applicability of Quality Attribute-Driven

Architecting In the Context of Agile Software

Development: A Case Study

G. H. El-Khawaga
Information Systems Department,

Faculty of Computers and Information,

Mansoura University,

Mansoura, Egypt.

Email: Ghada.elkhawaga {at} ieee.org

Galal Hassan Galal-Edeen
1
, A. M. Riad

2

1Information Systems Department, Faculty of Computers

and Information, Cairo University, Cairo, Egypt.
2 Dean of Faculty of Computers and Information, Mansoura

University, Mansoura, Egypt

Abstract— Understanding and grasping the philosophy of

architecting and considering the true purpose of it can help in

driving a conclusion that architecting –if done carefully- can be

an agility-enabler stage, which demands an agile mindset while

analyzing and specifying its drivers; and enables acting in an

agile way through implementing them, while keeping business

values and easing frequent accommodation of changes. Through

this paper, a framework for architecting in the context of agile

software development is presented. This framework is built to

overcome problems of current trends in agile architecting.

Integrating architecture-centric practices into an agile process

and managing effectively how and where these practices would

be inserted into the process, and what actions and interactions

will be between these practices and other development ones,

enable the proposed framework to realize these aims, and a case

study was held to help explore how this framework achieved
these goals.

Keywords- Software Architectures, Agile software development,

Quality attributes, Architecting Framework

I. INTRODUCTION

Methodology practitioners believe that the amount of
architecting done in the design phase of an agile process is not
enough to produce a flexible but not fragile architecture. Agile
architecting problems are believed to be the main reasons for
accusing agile methods of resulting in architectures whose
quality is suspected. If a deeper look is to be made into these
problems, it will be found that they are interrelated. Agilists
chase simplicity; this chase affected their view of architecting
and in some cases limited it in their view of metaphors as a
way for expressing and sketching architectures. Their chase of
simplicity frightened them of doing Big Design UpFront
(BDUF) and drove them into ignoring even foreseen changes
–quality attributes –that would attack them on their way
through the development lifecycle of a project. It is thought
that targeting quality attributes would contribute to having a
solution or at least eliminating side effects of the three other
problems.

For addressing these issues, there is a need for spending
some time planning architecture upfront. Architects should
advocate a development culture that values design decisions
based on careful analysis of requirements and give a due care
to quality attribute requirements in advance, especially that
they do not change as rapidly as functional requirements [1].
There is also a need for analyzing resulting architecture
carefully to assess its adoption of needed quality attributes,
and to deal with conflicts between several qualities at the
earliest possible development level. By designing for
including quality attributes right from the beginning, an
architecture will be shaped around a long term goal. By
including quality attributes, planning will be held for a basic
infrastructure of a system that will change through
development lifecycle. By designing architectures while
regarding quality attributes from the beginning; agile methods
would be more qualified for developing safety-critical systems
where performance and reliability are a must. By spending
time upfront in building a software architecture, and basing
this architecture on quality attribute requirements, agile
methods will be more qualified for building scalable software
systems and manage complexity. Planning for quality
attributes in advance prevents problems of missed quality
attributes and implications of redesigning a system to
incorporate these quality attributes.

Through this paper, a framework for Architecting Practices
Integration into Agile Software Development (APIASD) -while
regarding quality attributes upfront and working on preserving
the flexibility and agility of an architecture- and a case study on
its applicability, are presented. In section two, APIASD
framework is illustrated, and it is applied on a case study which
is presented in section three. After this, the experience and
results after applying this framework are highlighted in section
four, to conclude and sum up the experience as a whole in
section five.

II. APIASD IN A GLANCE

APIASD aims to represent a structured yet flexible process
that can result in an explicit architecture ensuring agility of the

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1383

product to be built. While forming APIASD, there were
certain aims to achieve, and these aims were inspired by
criticism of architecting in the context of agile software
development previously presented [2]. The aims of APIASD
can be summed up as follows:

 Providing guidance and practical steps that can help
bridge the gap between requirements and software architecture
from both sides. Architectural drivers –especially quality
attributes- should be clearly identified in definitive forms so as
not to leave the decision of accommodating them for
afterthought or chances. Mappings are offered between
business goals and user requirements –in all of their forms-
and the resulting architectural artefacts.

 Having a balance between architectural concerns and
context. While adhering to context more than concerns, more
time and effort can be wasted, because a project’s quality
attribute goals need to be analyzed may be less than those
defined through the organization’s process. On the other hand,
if quality attributes’ specification is extracted only as concerns
more than being driven by context, gains of experience
reusability will be missed, and much time may be spent in
analysing quality attributes while valuable quality goals can be
obtained from considering contextual information available.

 Having the rationale of architectural decisions is necessary
not only to trace decisions back to their reasons, but also to
leverage the learning curve of a team of a project’s team
members.

 Offering change impact information. The effect of
changing a component, a connector, or a relationship between
them, or inserting a new component in response to either a
functional or quality requirement should be highlighted ahead;
so as not to have a design that apparently can accommodate all
changes as they come up, while in fact it suffers severe mess
in its architecture which degrades gradually.

 Having an explicit architecture –even if an initial
incomplete version of it- is necessary for a process adopting
an incremental and iterative development trend, like an agile
software development process. In this context, an architecture
provides insights into what the next step or the next chunk to
develop will be.

 Guiding software architecture’s decomposition into
increments –while keeping business value as the main motive
of the decomposition- is also a basic aim of this framework.

To begin illustrating how APIASD was supposed to reach
these aims, figure 1 presents APIASD components. As shown
in figure 1, APIASD consists of five basic architecting phases
over three levels of agile development. The architecting
phases are the result of integrating practices from several
architecting methods, specifically they are: Global Analysis
(GA) [3], Qualty Attribute Workshop (QAW) [4], Attribute-
Driven development (ADD) [5], and Architecture Tradeoff-
Analysis Method (ATAM) [6]. In a glance, an illustration of
each phase is presented.

A. Phase 1: Value Directions’ Analysis

Studying and exploring values that may have a global effect
on the entire software system is inevitable to formulate
architectural drivers and enable change impact analysis by
searching for conflicting directions that provide more potential
for changes through the software’s lifecycle. Steps of this
phase take place after an initial understanding of values and
concepts is available, so as to act as a directive for
architectural drivers’ identification. In the context of agile
development, these value directions are open to modifications
and changes whenever a clearer understanding of software’s
goals and requirements is reached. The first step of this phase
takes Vision, elevator statement, and product highlights as its
inputs. Through the first step, development team and
stakeholders work on considering the purpose of the software
and critical business needs and identifying cross-cutting
business values that should be targeted. The output list of
value directions is analyzed through the second step of the
same phase.

This second step of this phase is held to establish relations,
and preference criteria of value directions identified. These
criteria work to enable change impact analysis, and locating
change influenced directions whenever a change can affect
any of value directions identified. The development team and
stakeholders – with the guidance of product owner and onsite
customer- gather to identify how a value director is likely to
change during or after development and to identify to what
extent this value director is negotiable or critical from business
stakeholders’ viewpoint. Also they identify the impact of a
direction on others, so as to enable identifying conflicts
between them and making a decision whenever a change hits
by the software.

B. Phase 2: Quality Attributes’ Analysis

The goal of this phase is to transform quality attributes
captured through value directions into tangible form to guide
architecture creation. Through the first step of this phase,
development team members brainstorm to obtain an explicit
form of quality attributes and to provide an operational
definition of quality attributes to be used to get a clue of how
to achieve these attributes and how to measure their level of
satisfaction. Scenarios generated are identified through
defining scenario parts, which are: stimulus, environment,
response, response measure, source of stimulus, and the
artefact affected by a stimulus. Scenarios generated fit into
quality attribute-related feature cards. A team leader makes
sure that each quality attribute has at least one scenario
concretizing and representing it. An architect is responsible for
separating system-related concerns from software-concerns
whenever found in scenarios generated.

Through the second step of this phase, quality attribute-
related feature cards are consolidated and prioritized. Quality
attribute-related feature cards consolidation helps condensing
development team efforts into necessary quality attribute-
related feature cards only. Quality attribute-related feature
cards prioritization helps in selecting the right portion of the
software to begin architecture development, based on business
value and impact on the architecture to be created.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1384

Figure 1: A framework for Architecture-centric Practices Integration into Agile Software Development (APIASD)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1385

The development team votes on pairs of quality attribute-
related feature cards to be merged, in a session managed by
the team leader. Then, the architect works on identifying
priority of quality attribute-related feature cards based on their
relative impact on the architecture to be developed, these
prioritizes assigned are based on back tracing to associated
value directors impact. Prioritization scale is (H/M/L), where
(H) denotes High, (M) denotes Medium, and (L) denotes Low.

The goals of the third step are to identify quality attribute
concerns and to group related quality attribute-related feature
cards by quality attributes and quality attribute concerns.
Identifying quality attribute concerns paves the way for
identifying solution strategies addressing each quality concern
through upcoming stages. Grouping related quality attribute-
related feature cards by quality attributes and quality attribute
concerns helps in identifying conflicts between a scenario and
other related to the same quality attribute or those related to
other quality attributes. The architect works on building an
initial version of the utility tree with quality attribute concerns
defined through it. This version is discussed by the
development team to get to a common understanding about
quality concerns’ naming and tenet. After identifying
functionality-related feature cards, the team should identify
dependencies between these feature cards and quality
attribute-related ones.

Through the forth step of this phase, quality attribute-
related feature cards are estimated. Quality attribute-related
feature cards’ estimation is a practice held the same way as for
functionality-related feature cards. Estimating a feature size is
a group effort that represents the collective mind of a team’s
members and increases their sense of ownership for the project
they are working on. Through this step, development team
agrees on scale for weighting and estimating feature cards
(Fibonacci scale for example). By the end of this step and after
estimating the functionality-related feature cards, the product
backlog is divided into two similar sections; one for quality
attribute-related feature cards and the other section for
functionality-related feature cards.

C. Phase 3: Architecture Shaping:

An initial architecture is obtained through the first step of
this phase. This initial version is driven by highly ranked
architectural drivers to ensure being driven by business value.
The resulting initial architecture evolves and grows
incrementally to incorporate further features and quality
attribute concerns as changes hit by the product to be
developed. The resulting architecture is built upon the highest
priority quality attribute concerns and features, and the
remaining ones are inserted into the architecture through
conducting further iterations of the same phase presented in
this subsection. The architect works on identifying
discriminating parameters of each design concern inspired
from its associated quality attribute-related feature cards and
scenarios. Discriminating parameters serve as comparison
criteria for the development team to make decisions about
which architectural strategies to choose. The development
team also associates chosen architectural strategies with their
implications concerning sensitivity points, tradeoff points,

risks, and non-risks to provide insights into change impacts in
case a change hits by the software.

Then the team has a second step to ensure that all
architectural drivers were satisfied through mapping them to
architectural strategies and decisions proposed to address
them. The development team works together on matching each
architectural driver with its related design concerns and
architectural strategies selected to satisfy them. The
development team members also collaborate to decide how
patterns relate to each other and give insights into new
element types that emerge as a result of combining patterns.
Through this step the initial form of an architecture is
visualized through constructing necessary views decided
according to which quality attributes are highly required and
according to user perspectives. The development team also
identifies integration types between functional and quality
attribute requirements, whether a quality attribute overlaps,
overrides, or wraps a functional requirement.

D. Phase 4: Architecture-Related Release and Iteration Work:

Incremental and iterative nature of this framework is
emphasized and highlighted through steps of this phase. The
initial architecture generated through previous phases provides
a roadmap of basic elements of a product to be, and all what
the development team need to do –through the first step of this
phase- is to choose an element of the system to work on in the
coming release. Choosing which element to be architecturally
explored and technically implemented through a release is
done according to business values addressed by this element,
risks and difficulty associated with developing it, current
knowledge available about dependencies of other elements on
this one, or through organizational criteria like skills
improvement plans. Then the team members pick related
architectural drivers associated with the chosen element,
especially highly-ranked architectural drivers that apply to it.

Through the second step of this phase, development team
members work together on defining basic responsibilities
implied by employing architectural strategies chosen. They
also work on defining basic functionalities implied by
architectural drivers allocated to the current release.
Responsibilities allocation should fulfill certain criteria such
as functional coherence, locality of responsibility, grouping
similar patterns of behavior, and grouping similar patterns of
abstraction. The team leader makes sure that all dependencies
between release allocated elements are transformed into
responsibilities allocated to certain elements to fulfill. After
this, team members distribute functionalities among all
elements assigned to be developed through the current release.
This step is held to give an initial idea about different
elements’ responsibilities which can be used as a basis for
release planning and iteration work allocation.

The third step of this phase complements the development
team negotiates an element’s interfaces from the perspective
of the different views available. An interface describes the
PROVIDES and REQUIRES assumptions a software element
makes about others. A team’s experience of the selected
architectural strategy can accelerate defining interfaces
between software elements and facilitate this step. The outputs

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1386

of this step may include interfaces between elements to be
implemented through the current iteration; interfaces between
elements to be implemented through the current iteration and
other elements to be implemented through other iterations;
external interfaces –if any- between elements from other
systems and elements to be implemented through the current
iteration; and dependencies and expectations between
elements to be implemented.

III. CASE STUDY: AUTOMATIC QUOTATION SYSTEM

In this section, we are going to present how this case
study was suitable for the application of APIASD, and how
it was applied on it. In response to the company’s HR
request, the company’s name and other identifying
information won’t be mentioned. The company’s name will
be denoted by XYZ. XYZ is a leading group of companies
specialized in providing translation, localization, and
content publishing services. XYZ has locations across
USA, UK, Germany, and UAE. XYZ facilitates its clients’
work through providing an online tracking system; called
Transparent; which enables the clients to track and monitor
their projects while ensuring privacy and efficiency. XYZ
teams suffered before from problems related to late
consideration of quality attributes into a software system,
and hence the amount of implied rework which imposed –in
some cases- redesigning the whole product under
development. This encouraged the CEO and the software
director to advocate applying APIASD on one of XYZ’s
projects. The project selected as a case study is a website
for automatic quotation of translation services requested by
a client. It is about a web-based system which enables a
client to upload files to be translated; choose currency to
pay with; choose a translation package from multiple
packages with different facilities, like providing punctuated
translations; customize delivery time; and track his/her
requested translations progress. This product relies on
Transparent in providing service packages’ specifications,
services’ prices, and acceptance or rejection of translation
tasks. The website allows clients to upload files in several
formats and it is the software’s responsibility to transform
received files into RTF files.

Three members form the development team of this
product; one senior developer, one tester, and a project
manager who acts also as the architect in this project. CEO
of XYZ recommended this project to be the company’s pilot
upon which the agile approach to software development and
APIASD were to be employed for the first time in this
company. Automatic Quotation was chosen to apply
APIASD on it, because it has no external customers, it is a
small project compared to others under development, and it
is a project that hits all major software development phases.

A. Fitness Check

First of all, it was important to ensure that agile
development is suitable for developing this project, as
APIASD is targeting projects where an agile software
development process is to be employed. Referring to Bohem
& Turner’s five critical dimensions [7] to decide the

development approach suitable for a given project; the
following notes were observed:

 Size: the product was expected to be developed within five
months with a team of three persons. A small project is the
ideal case for employing the agile approach.

 Criticality: it is a web-based project which provides
quotation services of translation services. The customer of this
project was the marketing department of the company. So,
damage from undetected defects won’t be irreplaceable
money. Therefore, this product is not expected to be safety-
critical, nor it is expected to cause loss of critical money. In
this case, the agile approach won’t be a risky choice if used in
developing such a product.

 Dynamism: the basic challenge this team faces was frequent
changes in customer requirements. These changes were not
resulting from changes in the way this business goes. Instead,
changes were mainly caused by having customers who aren’t
sure about what their needs were. Changes were also caused
by having long delivery cycles through which the team can
obtain customer’s feedback. The project manager’s basic
complaint was about how to manage changes. Therefore,
change responsiveness was a need that should be offered by
the approach employed to develop this product.

 Personnel: there was only one senior developer available for
developing this project, one tester, and the project manager
who was from time to time aiding in programming tasks. The
tester was willing to give hands on development, but not as a
full-time participant. When applying skill levels introduced
previously in chapter two, the result was:

1- One developer of level 2 (the project manager with 14
years experience)
2- One developer of level 1A (the senior developer with 5
years experience)
3- One developer of level 1B

Agile development requires, more than experience, a
competent practitioner who is willing to learn and keep react
to new situations innovatively. This was a clear characteristic
of the developer and the tester who were so enthusiastic to
migrate to using the agile approach to find a better way taking
over their tasks. It was also noticeable that the project manager
has the ability to tailor a process to fit a new situation.

 Culture: from interviews held with the software director and
software department manager, and through questionnaires
spread among team members; XYZ follows a plan-driven
approach to software development, but there is no standard or
documented process followed. Teams choose how they will
tackle a specific project concerning design, programming, and
testing. But, still a team is constrained by the project
manager’s decisions and views. The project manager declared
he follows a mutual decision making style. Team members
welcome having degrees of freedom in making decisions
about learning new tools, technologies, following new trends
in development, and deciding the order at which development
of functionalities will proceed. Still, XYZ is considered to be
an organization with traditional management style and

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1387

hierarchies, but people can feel comfortable and empowered
by having more decentralized decision making process.

Based on the previous illustration, it was concluded that
neither a pure agile approach nor a plan-driven one is
advisable for developing such a project. Instead, a hybrid
approach will be the most suitable for this situation. After
conducting several discussions with team members, it seemed
they were going to totally change their preproduction,
planning practices, and how the product will be incrementally
divided. What really matters is having APIASD being applied
incrementally and iteratively. So, applying APIASD here was
acceptable by the team as it was aligned with their beliefs to
spend time till having an architecture for a product developed.

As APIASD is argued to be adhering to the values of agile
development, people aren’t considered to be resources. So, it
was a must to ensure that the development team of Automatic
Quotation has a background aligned with basic tenets and
ideas introduced by APIASD. The background of the
development team was characterized by three aspects through
a number of questionnaires spread among them. These aspects
are:

 Beliefs about what architecting is; these are beliefs gained
through learning, communication, research, or any source of
information a team member could have known about
architecting from.

 Experience-based lessons; this aspect aims at getting an
idea about changes to how a team member architects or
participates to architecting a software product based on
previous projects s/he has worked on.

 What is done, this aspect is concerned with getting to know
whether the currently adopted architecting practices adopted
by this team are aligned or may be aligned with practices
introduced by APIASD.

To analyze the questionnaires’ answers, Smith & Sidky’s
approach [8] to analyze a company’s assessment of readiness -
to adopt the agile approach- is used. The final results are
presented in the following table.

TABLE 1: ALIGNMENT OF AUTOMATIC QUOTATION TEAM
MEMBERS TO NEEDED BACKGROUND ASPECTS

Aspect Alignment
Beliefs Largely aligned (63.6 %)

Experience-based lessons Largely aligned (58.25 %)

What is done Largely aligned (57.2 %)

From the previous table, the development team’s beliefs
were largely aligned with the beliefs that were aimed to be
induced by adopting APIASD. Actually, the beliefs aspect was
the most important aspect, because it was to drive changes into
the development team’s adopted practices –what is done- to be
more aligned with APIASD, and subsequently can affect
lessons learnt based on experience. Also, it was encouraging to
have results of questions related to experience-based lessons
and what is done to be largely aligned with the ideas which
were about to be brought in to the development environment by
APIASD. To conclude, applying APIASD in such

environment, by this development team, was suitable and
expected to serve its aims.

IV. EXPERIENCE AND RESULTS

After applying APIASD in Automatic Quotation
development, the details and influence of APIASD on the
development of Automatic Quotation project need to be
explored and analyzed. To capture these details and
influences, several meetings were held with the team
members; during which further guidance was provided to
them, and their comments and suggestions were captured.

Because a single software product can have several
architectures serving to achieve the same functionality with
different levels of achievement of quality attribute
requirements and different preferences, validating APIASD
was not subject to resulting outputs. Instead, it was about how
the development team tackled each step. A testimonial letter by
the architect/project manager was provided. Through this letter,
he provided an accumulative opinion encapsulating the whole
teams’ comments about their experience with applying
APIASD. This letter provides insights, that are used through
the coming subsections to highlight gains a team can have
while applying this framework; possible threats to validity of
this case study results; and further improvements that are
implied by the experience of applying the framework on
Automatic Quotation website development.

A. Reflections from APIASD application on Automatic

Quotation

Adopting APIASD provided the team with an architecting-
based smooth introduction to agile software development.
This claim is justified by quotes –in italic- excerpted from the
testimonial letter and team members’ words told through
meetings.

The Automatic Quotation team obtained the benefits of
using “a balanced approach for developing the architecture of
a system using an agile process”, as the project manager
characterized the framework in his letter. APIASD enabled the
team to construct an initial version of a quality attribute-driven
architecture. The initial architecture version is good enough to
provide a form of elements’ arrangements and relations
between them based on architectural drivers serving a set of
basic business needs. The team believes the resulting
architecture “will aid in aligning the product in the future with
arriving changes”, because they believe that this can be
enabled through the incremental and iterative manner, through
which the initial architecture evolves till it reaches its
complete form. The team was free to choose documentation
type and dose, provided that this documentation is abstract but
can serve its purpose. This way, architecture documents and
artifacts are more likely to be updated, and requirements can
be traced back whenever a change takes place. The
development team agreed on some gains of using APIASD.
These gains are highlighted in the following points.

 Concentrating efforts on cross-cutting issues. As declared
by the project manager, “value directions were valuable in
guiding user requirements exploration”. Agreeing on some

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1388

general crosscutting values gave an overall perspective of the
software to be developed and enabled the development team
focus on its priorities. Deciding value directions helped the
team pay attention to some contextual issues that should be
regarded while developing the software needed. The team
members liked the idea of value directions’ identification,
because it doesn’t require in-depth diving into details.
Identifying value directions’ characteristics “initiated
discussions about risks” related to frequency of changes of a
certain value direction’s related techniques, or organizational
changes, and impact of these changes on other value
directions.

 Provision of a quality attribute-oriented approach to
software architecting. The software director and the project
manager welcomed the framework’s trend in enforcing
handling of quality attributes right from the beginning, and
having them considered and monitored till the implementation
stage. The reason for this welcoming is that they experienced
before situations, when not considering quality attributes from
the beginning cost them much rework to be held. It was when
they approached the end of developing an ERP system, when
they got that the available servers don’t enable developing
required performance levels that they had to rebuild the
system around using external servers. Therefore, the whole
team was satisfied after using the framework and having
quality attributes paid attention to at all stages. Mapping of
decisions to their related quality attribute concerns “was useful
in tracking architectural drivers” and “useful of the team to
capture the moral of implementing certain techniques”, as the
project manager claimed in his letter. Also, quality attribute-
related feature cards’ priorities were in great manner inspired
by stakeholders’ preferences about value directions. So, the
framework offered mappings to quality attributes throughout
its steps.

 Condensed, yet comprehensive approach to
requirements’ gathering. Before applying APIASD, teams in
XYZ used to have requirements flowing down through the
development hierarchy till a developer gets them. How the
customer would get the needed requirements was up to how a
developer understands them. Changes in requirements were
not always resulting from changes in a customer’s
preferences; instead, changes were also resulting from
misunderstandings about needed requirements. The Automatic
Quotation team experienced feature cards’ writing for the first
time, and the project manager claimed that this practice
“helped a lot in gaining a clear understanding of user
requirements and preserving them into a form that can be
communicated easily”. Closely discussing value behind
requirements through many sessions enabled the team
members to reach mutual understanding of what a customer
needs to get from this project, because they were able to figure
out whenever shift of thoughts about requirements happened.
The developer after holding a clear set of requirements in
hands claimed that “she has never had requirements of a
project with that much clearance”. The team also pointed that
the mapping between quality attributes and their addressing
feature cards – provided through the utility tree generation
practice- was “a good way for organizing relations”.

 Enhancement of architectural decision making process.
APIASD suggested many practices, where collaborative
decision making is facilitated. The architect’s trend in
encouraging mutual decision making enabled making full use
of these practices. Through meetings, the team members
claimed that it was useful to begin considering implications of
a chosen strategy on other quality attributes and factors that
can affect the level of achievement of the quality attribute
addressed by a certain quality attribute. Knowing sensitivity
points, tradeoff points, and possible risks of using a strategy
was considered by the team members as useful information
that can help in discovering a strategy’s or a certain pattern’s
contribution in evolving the architecture, besides providing
potential to reuse these strategies or patterns in upcoming
projects. Also, the team members noted that reusability of
strategies from other projects eased the process of decision
making.

 Construction of a clear, but initial architecture. Before
applying APIASD, the team members had a belief that
architecture should be clear and completely defined ahead.
This belief was adjusted after experiencing the development of
an initial architecture of Automatic Quotation, and having this
architecture evolving incrementally and iteratively till
reaching its final form by the end of the project. For example,
while the development team could have initially architected
the software for security, this was not a requirement of high
priority. Therefore, it was valuable to consider it as its relevant
feature cards become into consideration, at the suitable
release. In the same time, the team allocated size to security-
related feature cards, so as to consider their influence on
needed development time and effort. For a requirement of
high priority, like availability; the team placed elements for it
at the initial version of the architecture and began detailing
and exploring techniques to address availability needed
concerns in the first release. Further exploration of availability
techniques brought more specification into the initial
architecture. The initial architecture was clear through
constructing views, which “helped in making the product parts
more visual”, and defining elements which the project
manager “insisted on communicating them” and interfaces
between elements. Constructing views is the activity that “was
beneficial in clarifying relations between elements to be
implemented”, as excerpted from the letter.

 Utilizing on-purpose modelling. The team constructed
descriptive models, each one served to reflect a different
aspect of the product; and these models worked jointly to
present a big picture of the product; or “a documented
agreement on basic parts”. At the same time, as the
development process went deeper through releases and
iterations, relevant diagrams were used to give the team a
close view of information flow, processes, and deliverables.
The team believed that the constructed views can “aid in
locating which parts will be affected by changes”. This is
because models helped them explore key elements and their
relationships. Models helped the team in “making the product
parts more visual” and this helped the team understand many
situations and bring precision to the architecture description,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1389

for example in the case where availability overlaps data
services.

 Doing just the work that adds value. The application of
APIASD enabled the Automatic Quotation team to achieve an
understanding of the agile mindset and employing it in all
practices suggested by this framework. This is because the
framework’s practices are “applicable, simple, and
understandable”. An example on gaining this mindset is the
team’s attitude in modelling and choosing which views to
construct diagrams for. Another example is given by the
project manager’s statement about estimation, where he
mentioned that estimation using story points “was clear for its
purpose, but unclear for how to decide relative sizes”.
Therefore, the project manager claimed that for upcoming
projects, he will use weighted factors –like cost, effort, and
organizational effect- to decide relative sizes of both quality
attribute and functionality-related feature cards.

B. Threats to Validity

The main purpose of this case study is to examine whether
applying APIASD can aid in developing software
architectures driven by quality attribute requirements, while
conforming to the agile mindset of software development.
However, there are some threats of external validity of this
case study, which affects the degree to which the results can
be generalized. These threats are explained below.

 Participants’ experience. Experience of team members is a
critical success factor. An experienced architect is more likely
to lead the team towards achieving better results and
constructing clearer and more communicable artefacts of
applying APIASD. The Automatic Quotation team had one
architect, whose experience have helped in reusing knowledge
from other projects and making good use of templates and
guiding materials his team was supplied with.

 Team members’ experience with agile development. The
developer of Automatic Quotation had previous background
about agile development without practicing it. However, this
wasn’t enough. Presence of previous experience of the agile
approach in software development –among other benefits-
could have helped the team in giving feedback about the effect
of applying APIASD on the overall schedule compared to
using a pure agile process without integrating APIASD. Also,
a team with an experience with agile development could have
provided feedback about the percentage of refactorings
undone (reduced), as a result of applying APIASD.

C. Suggested Improvements to APIASD

After applying APIASD on the case study, many paths
were highlighted that can provide potentials to leverage
APIASD’s effectiveness in achieving its goals. These
improvements are suggested and explained as follows:

 Addressing system-wise issues. APIASD was about
providing guidelines to construct software architectures; this
was magnified through feature cards’ writing sessions, where
the architect was responsible for extracting software-related
concerns from system-related ones. APIASD should be

extended to handle system architecture-related issues, so as to
fit within information systems’ with their dimensions other
than software. Incorporating guidelines to architect systems
developed using the agile approach can help provide more
realistic solutions to software architecting problems through
putting software architecting into its wider context.

 Applying APIASD on different projects with varying
dimensions. The project manager of Automatic Quotation
gave an advice of that “this framework should be applied on
projects of larger scales and different contexts”. This can help
in figuring out the influence of a product’s size on the type of
artefacts needed to represent a resulting architecture, and
needed changes to be made on practices of APIASD to
accommodate the increase in the number of requirements
and/or the number of team members. It is also beneficial to
identify the influence of a project’s size on time and effort
needed to develop an architecture for it. Also, there is a need
to apply APIASD on projects with fast changing requirements
to identify the percentage of changes implying architectural
modifications to the total number of changes.

V. CONCLUSION

Agile architects should advocate a development culture
that values making architectural design decisions based on
careful analysis of requirements and give a due care to quality
attribute requirements in advance, especially that they do not
change as rapidly as functional requirements. APIASD is
believed to provide guidelines and practices to develop a
software architecture while adhering to both of agile
development values and software architecting principles.
APIASD was applied on a case study, whose analysis
confirms the potential of APIASD to achieve and maximize
returned business value on the long term. Still, a lot should be
done to apply APIASD on more case studies to get to a vision
about APIASD’s effect on reduction in time and number of
refactorings associated with software architecture
development.

REFERENCES

[1] Nord, R. L., Tomayko, J. & Wojcik, R., (2004), “Integrating Software-
Architecture-Centric Methods into Extreme Programming (XP)”, CMU

Software Engineering Institute, Pittsburgh, PA, USA.

[2] El-Khawaga, G. H., Galal-Edeen, G. H. & Riad, A. M., (2013),
“Architecting in the context of agile software development: fragility

versus flexibility”, International Journal of Computer Science,
Engineering, and Applications (IJCSEA), Vol. 3, No. 4, 25-37.

[3] Hofmeister, C., Nord, R. & Soni, D., (2000), Applied Software
Architecture, Addison Wesley Professional, Indiana, USA.

[4] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C. &

Wood, W., (2003), “Quality Attribute Workshops (QAWs)”, CMU
Software Engineering Institute, Pittsburgh, PA, USA.

[5] Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R.

& Wood, B., (2006), “Attribute-Driven Design (ADD)”, CMU Software
Engineering Institute, Pittsburgh, PA, USA.

[6] Clements, P. C., Kazman, R. & Klein, M., (2002), Evaluating software

architectures: Methods and case studies, Addison Wesley Professional,
Indiana, USA.

[7] Boehm, B. & Turner, R., (2004), Balancing Agility and Discipline: A

Guide for the Perplexed, Addison Wesley Professional, Indiana, USA.

[8] Smith, G. & Sidky, A., (2009), Becoming Agile in an imperfect world,
Manning Publications Co., NY, USA.

