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Abstract--- Job shop scheduling problem is a problem of 

scheduling n jobs on m machines with each job having  a 

set of equal number of  operation that are to be process 

in unique machine routes. The Job Shop Scheduling 

(JSSP) is one of the hardest combinatorial optimization 

problems and has been researched over the decade. This 

study proposes a new approach to solve a Job Shop 

Scheduling problem by structuring the problem as 

multi-agent system (MAS) and using 3 game theoretic 

algorithms to achieve the scheduling objectives. The 

objective of this study is to minimize the makespan. This 

approach is meant to achieve feasible schedules within 

reasonable time across different problem instances. This 

research solves the scheduling of operation on different 

machine and defines the sequence of operation 

processing on the respective machine. Job Scheduling 

problem is a resource allocation problem which is 

mainly apparent in manufacturing environment, in 

which the jobs are allocated to various machines. Jobs 

are the activities and a machine represents the 

resources. It is also common in transportation, services 

and grid scheduling. The result and performance of the 

proposed algorithms are compared against other 

conventional algorithms. The comparison is on 

benchmark data used across multiple studies on JSSP. 

 

Keywords- Job shop scheduling problem(JSSP), Random 

token Game(RTG), Potential Games(PG), Random 

Games(RG), Game theory,  Makespan, Q-learning, 
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I. INTRODUCTION 

A Scheduling problem can be defined as the problem of 

allocation of limited shared resources over time to competing 

activities. Scheduling problems have over the years attracted 

interest in much research and has been the subject of a 

significant amount of literature in the operations research and 

artificial intelligence fields. Job-shop scheduling is one of the 

most commonly researched about problems in the domain of 
scheduling problems. Job-shop scheduling problem is a 

scheduling problem where, there are m machines and j jobs 

where m>1, each job has a set of operations o and has 

associated a processing order assigned for its operations. Job-

Shop scheduling is a known NP-Hard. The objective of this 

can be classified under the following; 

Minimize the Makespan- The Makespan is the total length of 

the schedule, that is, the time it takes all jobs finish processing. 
This is formulated as 

M= max{ C1……….Cn}       (1) 

Where, 

Cj= the earliest time job j finishes processing. 

 

Minimize Tardiness- In situations where the jobs j have 

deadlines dj, tardiness is the duration of time delays past its 

deadline. The tardiness of the schedule T  is, 

                      (2) 

Minimize lateness- Lateness for a job  is defined as,  

The Lateness of the schedule L 

                        (3) 

This study concentrate on minimize of makespan for 

scheduling problems. We structure the problem as multi-agent 
system (MAS) and we introduce three algorithms based on 

game theory, reinforcement learning. We describe MAS as a 

computerized system composed of multiple interacting 

intelligent agents within an environment. Multi-agent systems 

can be used to solve problems that are difficult or impossible 

for an individual agent or a monolithic system to solve. 

Because of its nature it lends its self to solving problems where 

distributed decisions are necessary. We define resources (either 

machine or jobs operations) as agent and define games in 

which they participate to achieve a feasible solution. 

A. Problem Description and formulation 

We formalize the job shop scheduling problem as follows; A 

problem instance P= (M, O, J) in job shop scheduling consists 

of  

 A set M of Machines, 
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 A set O of operations  o, each associated with a 

machine M(o)Є M and having a duration d(o) Є N 

and  

 A set J of jobs J(o1………….on) (each operation has 

exactly one occurrence.) 

 

A given Schedule S for P assigns to every operation o a 

starting time T(o): on the relevant   machine time  

T (o)≥0 for all o Є O 

We define an operations processing time P(o) as 

 

P(o)= T (o)+ d(o)                                (4) 

 

We define a precedent constraint on T (o’)on T (o) such 

that 

T (o)≥ T (o’)+ d(o')                            (5) 

 

                 for operations o' preceding o in the same job. 

Our objective function in the problem is to minimize the 

makespan in search of a near optimal schedule.  We defined 

the Makespan as the time the last machine finishes process the 

last operation, therefore the makespan of a schedule M(S), can 

be defined as 

 

M(S) = MAX( T(o1)+ d(o1) , T(o2)+ d(o2),……………..T(on)+ 

d(on))                                                    (6)    
To define this as a multi-agent system, We adopt and extend 

[Opiyo et al,2009]’s definition of a multi-agent system for 

parallel machine  scheduling.  Same as their study had, we 

make the following considerations; 

 A multi agent system to be a system that consists of the 

agents, the agents act as autonomous entities that can 

sense and react to the changes in their environments.  

 Game theory as the study of interactions in contexts where 

the participants make the choices to affect the overall 

status in the game. A game is a structure that consists of a 

set of the agents, a set of the agent actions or choices and a 
set of the agent payoffs associated with their actions. A 

situation where schedules are generated by agents as they 

choose machines can be considered as a game [Opiyo et 

al. 2008b]. 

B. Literature review 
Job shop scheduling is among the hardest combinatorial 

optimization problems and is NP-complete (Garey and 

Johnson, 1979). An NP-complete or NP-hard problem is where 

no algorithm exists (unless P=NP) that in polynomial time is 

able to solve all possible instances of the problem. Hence, the 

solution time risks increasing exponentially with the number of 

jobs. (Karin Thörnblad, 2013).  According to (Karin 

Thörnblad, 2013) JSSP remains a NP-complete problem 

despite the objective function selected.  Over the past forty 

years different solution approaches have been proposed to 

address the JSSP.  These approaches can be categorized in two, 
these are; 

Optimization Algorithms: These are usually mathematical 

programming based approaches that work toward achieving 

optimal solutions. According to (Azizizoglu and Kirca 1999a) 

they involve the process like formulating Mathematical models 
for the problem, and using exact algorithm such as branch-and-

bound algorithms or mathematical formulation to solve the 

problem. These methods simply build an optimum solution 

from the problem data by following a simple set of rules which 

exactly determine the processing order. Optimization 

algorithms have been known to solve a given problem 

optimally with a requirement that increases polynomially with 

respect to the size of the input. Optimization approaches 

usually process like formulating Mathematical models for the 

problem.  These approaches form the earliest of approaches in 

solving scheduling problems, The first example of an efficient 
method and probably the earliest work in scheduling theory is 

(Johnson ,1954) who develops an efficient algorithm for a 

simple two machine flow shop whose objective function was to 

minimizes the maximum flow time. The two most common 

methods in these approaches are ; Branch-and-bound 

algorithms and Mathematical formulation.  

Approximation Algorithms: These are usually 

heuristic/Meta-heuristic algorithms based approaches that aim 

to give an approximately near optimal solution rather than the 

optimal solution. These methods are usually preferred and are 

better for larger problem/dynamic problems/ problems with 
multiple constraints as they are more likely to converge to a 

good enough solution much earlier than optimization methods 

can achieve an optimal solution. In most problem instance 

successful algorithm have shown that the solution derived from 

approximation approaches are usually close to enough to the 

optimal solution. Since the solution is close to optimal and 

generated in much less time, (Blum and C.Roli, A. 2003) argue 

that the benefit of having using far less resources outweighs 

the disadvantage of not arriving to an absolute optimal 

solution. The main classification of approximation algorithms, 

that is, priority dispatch rules, bottleneck based heuristics, 

artificial intelligence and local search methods. 
 

A multi-agent system (M.A.S.) is a computerized system 

composed of multiple interacting intelligent agents within an 

environment. Multi-agent systems are centered on the concept 

of a rational agent. An agent is anything that can perceive its 

environment through sensors and act upon that environment 

through actuators (Russell and Norvig, 2003). According to (G 

WeiB, 2000) interest in multi-agent systems is largely founded 

on the insight that many real world problems are best modeled 

using a set of agents instead of a single agent. In particular, 

multi-agent modeling makes it possible to cope with natural 
constraints like the limitations of the processing power of a 

single agent or the physical distribution of the data to be 

processed and allow us to profit from inherent properties of 

distributed systems like robustness, fault tolerance, parallelism 

and scalability. 

http://en.wikipedia.org/wiki/Intelligent_agent
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(V lesser,1995) state that The current set of multi-agent 

applications can be classified into three broad areas.  The 

firstly, distributed situation assessment Applications, such as 

distributed network diagnosis, emphasize how (diagnostic) 
agents with different spheres of awareness and control 

(network segments)should share their local interpretations to 

arrive at consistent and comprehensive explanations and 

responses. Secondly distributed expert systems applications, 

such as concurrent engineering, emphasize how agents 

negotiate over collective solutions (designs) given their 

different expertise and criteria. The next generation of 

applications alluded to will probably involve all the emphases 

of these generic applications and more. Finally as is in our 

case, distributed resource planning and allocation applications, 

such as distributed factory scheduling, emphasize how 
(scheduling) agents (associated with each work cell) should 

coordinate their schedules to avoid and resolve conflicts over 

resources and to maximize system output.  

According to (Neumann and Oskar Morgenstern,1944) ,Game 

theory is an economic theory that models interactions between 

rational agents as games of two or more players that can 

choose from a set of strategies and the corresponding 

preferences. It is the mathematical study of interactive decision 

making in the sense that the agents involved in the decisions 

take into account their own choices and those of others. 

Choices are determined by stable preferences concerning the 
outcomes of their possible decisions, and agents act 

strategically, in other words, they take into account the relation 

between their own 

II. ALGORITHMS AND METHODS 

In this section we define our job Shop algorithm as a Multi-

agent system environment and we formulate three game 

theoretic algorithms for solving job shop scheduling problems. 

A. Random Token Game 
In defining algorithms for parallel machine scheduling [Opiyo 

et al, 2008] define random choice games are those in which the 

agents make choices at random without considering any other 

matters. In their definition an agent are allowed to make moves 

in turn and each agent in its turn makes random decision which 

machines they would like to be processed on and select the 

earliest available time slot on the machine.  After all the agents 

have made their move the resultant schedule is evaluated.  This 

process is repeated in several rounds and at the end the most 

suitable/ shortest schedule is select as a feasible solution. This 

work was able to demonstrate that it is possible to achieve a 

relatively feasible schedule using random select of schedule in 
a schedule search space. It gives us great insight on the 

distribution of solution in the search space. We try to define a 

similar algorithm for job shop scheduling. Unlike in parallel 

machine scheduling, job shop scheduling as the following 

complications when trying to employ a pure random strategy in 

selection of a feasible solution from the search space;  

Agents/operations are tired to a machine, that is, the machine is 

already pre-selected and  precedence constraints among agents, 

that is the start time S(A)of an agent  A , 

S(A) ≥ S(A’)+ T(A’)                               (7) 

 

Where A’   is the preceding Agent with a processing time of 

T(A’).   

These constraints limit the flexibility of an agent in machine 

selection and put a constraint its selection of a time slot on a 

machine. To achieve similar a random selection of solution in a 

such space with the above constraints in job shop scheduling, 

we introduce a random token notion. The Random token 
randomizes the playing turn for the agents. This works as 

follows; we divided the game in two stages for all rounds, the 

stages are as follows; 

Selection Stage; this stage allows random selection of agent 

turns which will result in random ordering of agents in the 

machine. This works by introducing a random token in the 

environment that is assigned to an agent at random. The agent 

that has the token is allowed to order itself on its respective 
machine waiting queue on an assigned a priority on first come 

first serve basis. To formally state this, If  Omn Represents an 

agent O with processing time on machine m and it was the nth 
 

agent to make a selection on the machine, then  its priority 

value P(Omn)  (lower value signifying higher priority ) is; 

 

P(Omn)  ≤ P(O’m(n+1))  ≤ P(O’’m(n+2))                       (8) 

 

Where O’ and O’’ followed agent O in selection of the 

machine in that respective order.   

 
Allocation Stage; the allocation stage was motivated by shift 

bottle neck paradigm. In shift Bottleneck, an initial selection of 

a schedule is selected as we have done in the selection stage 

without actual time share allocation. If we were to evaluate the 

schedule as it is now with the agents arranged in a first come 

first serve order, the schedule will have multiple delays among 

the operations and we will have unnecessary idle time on the 

machine The shift bottle neck algorithm recognizes that in a 

schedule the is always at least one point/bottleneck that affects 

its performance. The aim of the shift bottleneck is slow 

minimize/shift the bottle in several iterations. We adopt a 

similar iterative approach but in our algorithm it’s the agent 
that makes the decision whether to shift or stay based on their 

internal states, The agent act for the social good and if an agent 

consider itself a possible bottleneck, it shifts self to remove the 

bottle neck if not its stays .All the waiting agents with the 

highest priority on each machine’s waiting queue are allowed 

to a turn, there status changes to active and they are allowed to 

evaluate their position. If an agent see that they could be 

possible bottlenecks they will choose to move to the back of 

the queue assume the lowest priority on the queue and status 

change back to waiting. The  Agent suspects it may bottleneck 

using the following criteria; 
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If an agent A has a predecessor and the predecessor has not 

been schedule yet (acquired a time share), then A knows it’s a 

might be a bottleneck on a machine if there exists other agents 

on the machine with a lower priority. In this case the agent will 
move to the back of the queue. 

If an  agent  A’  has a predecessor A that has already been 

scheduled and its  difference  between  A ‘s  expected 

processing end time , P(A)  and the ‘next available start time’ 

on the machine M , E(M)  is twice as big as the average 

processing time of the all the agents queued on the machine, 

then the agent suspect itself to be a bottleneck. A Machines 

‘next available start time’, E(M), is the sum of all the agents 

that have been scheduled on the machine.  If   a machine M has 

3 agents scheduled on it, An agent defined as A(job, machine) . 

 

E(M)= ( P(A1M) + P(A2M) + P(A4M) )/3                (9) 

                                         

If (A’1m) is the one evaluating it situation and it has a 

predecessor A, the processing end time of A,  

P(A) =S(A)+D(A)                                       (10) 
Where;-  

 S(A) is the processing start time of A, 

D(A) is  the processing time/duration of A. 

A at this point would consider its ‘possible’ processing 

start time, S(A’1m)  , as  equal to the processing end time , 

P(A),  of A.        S (A’1m) = P(A)                                             

(11) 

 (A’1m)   consider itself a bottleneck in the schedule, and 

move to the back   of the machines waiting queue. If the 

agent (A’1m)    has evaluated its situation and does not 
consider itself a bottleneck, the agent will be scheduled on 

the machine by selecting the earliest possible start time on 

the machine. This would be the greater of P(A)and E(M). 

That is, if   

P(A)≥ E(M) then S (A’1m) = P(A) else 

S (A’1m) = E(M) 

 

The same steps are repeated for each agent for the number of 
Iteration needed till all the agents have been successfully 

scheduled. A complete selection stage followed by a complete 

allocation stage constitute a round in the game, each round 

produces a candidate schedule from the search space. At the 

end of the game, the  makespan m is evaluated  of all the 

candidate solution  s Є S  where  S  represents the search space 

and  selects a feasible solution f(s) using the following criteria. 

f(ms)= MIN(m1 , m2 , m3 ,……….. ms)                           (12) 

 

Because we achieved a random initial selection by using a 

randomized token. We can say that we are selecting schedules 
at random from the search space and thus we have achieved a 

similar effect that [Opiyo, et al] achieved with their random 

games in parallel machine scheduling. Therefore we can state 

for a typical job shop problem there is a random distribution of 

solution on the search space. 

  

B. Potential Game 
[Opiyo et al, 2008] described potential games as those in which 

the incentive of all players to change their strategy is expressed 

in one global function called the potential function. The 
progressive actions of the participants lead to a stable state. In 

this section we defined a game that behaves in this way. In our 

interpretation we define a function that reward’s/penalize 

agents based of the action it takes in the environment. As 

agents take actions the gain a bit of appreciation of their 

environment as their actions are reinforced by their 

reward/penalty system. To achieve this we borrow concepts 

from reinforcement learning, which transform our game into a 

policy search function, That is, the aim of the game is meant to 

teach an agent what to base their actions (what policy to use) 

and at the end of a learning phrase is able to make decision on 

a certain state based on their experience with on that particular 
state. We utilize markov decision process to model our agent 

learning as follows; 

A Markov Decision Process (MDP) is a 4-tuple [S, A, T, R] 

where: 

 S = s1, ..., sn denotes a finite set of states; 

 Set of actions A, and   A(s) Є A, where A(s) is the 

finite set of available actions in state s Є A; 

 T : S × A × S →[0, 1] is the transition function, T(s, 

a, s’) specifies the probability of ending up in state s0 

when performing action a in state s;  

 R : S × A × S’ → R is the reward function, R(s, a, s’) 
denotes the expected reward for the transition from 

state s to state s’ after taking action a. 

For MDPs, the Markov property assures that the transition 

from s to s’ and the corresponding reward R(s, a, s’) depend 

only on the state s and the action a, and not on the history of 

previous states and actions. 

 Q-learning provides a way of determining utility for agent 

decisions using the utility function;                                   (13) 

)),()','(max(),(),(
'

asQasQrasQasQ 
a

  

Where; 

),( asQ
- The utility of state s defined recursively the 

update rule above 
 - is a learning rate.  


- Discount rate of subsequent action.  
r- Reward  of taking action a on state s 

The Psuedocode of the exploration/learning process is as 

following 

 Initialize Q-values arbitrarily 

 for each episode do 

 Initialize s 

o for each episode step do 

 Choose a from s 

 Take action a, observe state s’ and r 
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 Update 

 

o end for 

 end for 

 

 By using Q-learning in a an environment where the agent has 

partial observation of the environment, an agent can learn a 

finite set of the search space and using the potential function, 

derive utility for each its decisions and finally select a series of 

decision policy that are beneficial to it. If we utilize Q-learning 

we are able to achieve (opiyo, et al, 2008)’s description of a 

potential game where there is a global function that guides 

agent in decision making. The reward function and utility 

function act together to guide the agent in decision making. 

Our potential Game environment will therefore consist of the 
following; 

Actor only agents, these agents will be responsible for 

selection of policy during the exploration/learning stage of the 

game. The agent at each time step in schedule formation will 

employ a certain policy as they seek to achieve a complete 

schedule.   

A critic only agent will responsible for evaluating the policies 

employed by each agent at every time step and will give 

feedback to the agents in terms of a reward/penalty. In our 

algorithm the critic’s memory structure will also be responsible 

for storing the learned utility of each state.  Once the 

exploration is done information learned by actor agents is used 

by them to select successive policies, as they form what they 

consider to be an optimal schedule. 

Action Policies. These represent dispatch rules, the rules act as 

policies that is available for the actor to choose from when 

selecting the next action, that is, whenever  an actor makes a 

specific move, their move has to be based on a specific policy.  

At learning stage an actor would tryout one or more policies 

and will observe the reward/penalty using that policy on that 

particular state.  The aim of our global function is to define a 

series of policies that an agent can employ that would lead to 

an optimal schedule .The different policies the agent can 
employ at a specific place are, FIFO- First In First Out ,LIFO-

Last In First Out, SPT-Shortest Processing time and LPT-

Longest Processing time. 

Global Potential function.  This function is used by the critic 

agent to appraise and influence the action of the actors. As we 

had earlier demonstrated in the Q-learning algorithm, the 

function assigns a reward on agent actions and defines the 

utility of each   Q-pair. The utility will finally influence the 
agents’ decision on which policy to employ at the selection 

stage.  

Reward structure. The reward structure is used by the critic 

agent to appraise the agent actions.  A reward is quantification 

of how good the selected policy in the current state is. We 

define our reward a penalty and quantify it as total process of 
all waiting Jobs. This is a sum of the processing time p(o) of 

the  n jobs  that are  waiting global dispatch queue and on 

waiting queues of machine after all actor agents have selected 

a single action. That is,                                                                

                                                                                   (14) 

 

   

C. Random games 

The last game we define is the random games. This game 
borrows the same concept as potential games where there are 

actor only agents that represent a machine. The MAS 

environment is structured as follows; Our environment will 

therefore consist of the a global dispatch queue, this is a queue 

that holds all jobs before they can be moved to a 

machines/agents waiting queue. Jobs move to from the 

dispatch queue to the machine queue when there is no 

constraint to their processing e.g. they have no predecessor or 

their predecessor has already been scheduled for processing. 

Our environment also consists of Actor only agents, these 

agents are responsible for selecting the next operation to 

process. 

The only difference between random and potential games is 

that in random games the agent does not employ any policy to 

base its actions on it simply selects the next operation to 

process at random. There the agent explores the search space 

randomly. This description of a random game is the same as 

described in (opiyo et al, 2008) where game has multiple 

presets n number of iterations and in each iteration, an agents 
select operations at random from there waiting queues until all 

operations have been schedule. This forms a candidate solution 

S0 and its makespan is noted.  At the end of the game a 

candidate solution Si is selected as the feasible solution with 

the near optimal schedule. The formula below shows the mode 

of selection of this schedule. 

                     (15) 

III. RESULTS AND DISCUSSIONS 

For our test we use benchmark problems used in Beasley’s 

operation research library complied by Professor Beasley J 

(Beasley 2005), this is found on Brunel’s universities 

website.  The benchmarks offers a list of different 

instances of job shop problems complied by different 

researchers in there works. The specific instances of 

problems selected are from ; 

 ABZ 5 problems of 2 sizes proposed by (Adams, 

Balas and Zawack 1989). ABZ 5 and ABZ 6 instances 
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of size 10×10 with processing times from the intervals 

[50,100] and [25,100] respectively and ABZ 7 – 9 

instances of size 20×15 and processing times 

 la01-la40 are from "Resource constrained project 
scheduling: an experimental investigation of heuristic 

scheduling techniques" by S. Lawrence.   

 Car1-car8 are from "Ordonnancements a contraintes 

disjonctives" by J. Carlier.  

 orb1-orb10. 

We also compare our algorithm to the following algorithms 

which are heuristic based. 

Table 1: Benchmark algorithms 

Problem  Sym

bol 

Types of 

problem  

Instance

s Sizes 

Handle 

“Multi-resource 

shop scheduling 

with resource 

flexibility and 

blocking.” (Y Mati 

and X Xie, 2011). 

MX Job Shop 

Scheduli

ng  

10 X 10, 

instance 

only 

“Use of an Artificial 

Immune System for 

Job Shop 

Scheduling”, ( CAC 

Coello et al, 2003) 

AIS Job Shop 

Scheduli

ng 

Multiple 

“A contribution to 
the stochastic flow 

shop scheduling 

problem”, (M. 

Gourgand et al, 

2003) 

SD Flow 
Shop 

Scheduli

ng 

Multiple 

“Job-Shop with 

Generic Time-Lags: 

A Heuristic Based 

Approach”. (P. 

Lacomme, 2011) 

GLT Flow 

Shop 

Scheduli

ng 

Job Shop 

Scheduli

ng 

Multiple 

 

The following are the sample results on the benchmark 

problems 

 

 

 

 

 

Figure: 1 Random games performance 
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Figure: 2 Potential games performance 
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Figure: 3 Random token games performance 

 

Table 2: Algorithm comparisons 

    PG AIS MX GTL RG RTG 

la01 10 X 5 15 16 32 31 15 8 

la02 10 X 5 22 18 37 37 18 0 

la05 10 X 5 5 4 25 48 9 0 

abz5 10 X10 9 19 38   12 14 

la16 10 X10 12 16 28 69 14 13 

la17 10 X10 17 16 30 65 20 17 

la36 15 X 15 28 23 62 38 25 33 

la38 15 X 15 33 27 65 42 24 38 

abz7 15 X 20 28 26     21 22 

abz8 15 X 20 23 25     25 26 

la07 15 X 5 6 8 36 26 15 9 

la08 15 X 5 14 12 46   17 15 

la09 15 X 5 13 7 45   16 5 

la10 15 X 5 8 2 36   7 6 

la28 20 X 10 28 28 96 64 26 35 

la29 20 X 10 26 22 89   25 34 

orb03 10 X10 32 27 30   12 2 

orb04 10 X 10 27 21 28   28 9 

car1 11 X 5 18     96 19 39 

car2 13 X 4 30       17 35 

car3 12 X 5 31       17 35 

car4 14 X 4 10       15 32 

car5 10 X 6 34     77 22 30 

car6 8 X 9 24       16 14 

car7 7 X 7 25     67 25 25 

 

 

Our results provided the following insights 

The potential games algorithm perform relative better with 

more strategies used. This is because it increases breadth of 

choice and actions available to an agent.  This increases the 
learning experience of an agent and increases the chance of 

learning a more favorable solution. The different in quality of 

solution produce when using only SPT and LPT compared to 

all four strategies, increase with the sizes of the instance. This 

is because using only 2 strategies limits the game to a subset of 

solutions in the search space. Limiting the experience scope of 

the agent. 

Both the Potential game and Random games do not show 

improvement the quality of solution designed when the number 

of paths was increased significantly from 100 to 1000. This is 

because the quality of schedule generated for these more on the 
number of strategies used as they increase the breadth of 

choose or scope of learning for the agent. Increasing the 

number learned paths learned without increasing the  number 

of strategies available to the agents only  leads the agent to 

learn multiple similar schedules, thus the agents is already 

limited to a certain range quality of solutions they can achieve.  

Increasing the number of rounds in the random token game 

does show improvement in the quality of schedule generated. 

This is because it increases the number of solution the 

algorithms has to choose from the search space increase the 

probability of selecting a more favorable solution. 

The tests on Potential and Random games  also shows 

relatively  poor performance on flow shop problems(car1-car7) 

compared to the job shop problem this can be attributed to the 

fact that because of the nature of a flow shop problem which 

leads to some agents having a larger action set(operations to 

choose from) than others. Machines/agents the process the 

initial operations of the jobs end up being the only ones 

playing at the beginning of the game.  The lower the number of 

agent learning at each stage reduces the learning experience 

and also reduces the chances of achieving favorable solutions. 

The test shows that quality of solution of Random Games and 

Potential Games are affecting by the sizes of the problem 
instance.  Quality reduces when dealing with large problem 

instances. This can be attributed to the fact increasing the size 

of instance significantly increases the size of search space.  

Since this games are based on learning a subset of the search 

space based on the strategies selected and searching for a 

solution within that subset, the large the search space the 

harder it is to get a quality subset.  

Only the Random Token Game doesn’t show better adaptation 

to change in instance problem size. This can be attributed to 

the fact that it works by selecting solutions from the workspace 

at random and refining them, thus not greatly affected by the 
size of the search space. 
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Our algorithms have shown relatively good performance 

compared to the selected benchmark problems. On average we 

achieved better or equal performance across all problem 

instances. 

IV. CONCLUSIONS 

This paper deals with defining three game theoretic algorithms 

for solving job shop scheduling problems. Our algorithms have 

shown relatively good performance on the benchmark data and 

we were able to converge to a feasible solution in relatively 

good time. We have also been able to demonstrate by defining 

the job shop problem as a multi-agent system we are able to 

provide algorithms that provide good solution across different 

sizes of problem instances. From the study we can recommend 

the following further studies.  

 This paper has dealt with job shop scheduling where 
scheduling is static and job are scheduled as a batch. 

In the real world problems tend to be further research 

work can be done to the algorithms to apply the two 

dynamic job shop scheduling.  

 Our study choose a basic  where of structuring the 

reward/reinforcement  function based on total 

processing time of un-scheduled jobs at any given 

point.  Further work can be done to refine the 

algorithm by defining better reward structure to 

improve the learning of an agent. 
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