
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1420

Game Theoretic Multi-Agent Algorithms for the Job

Shop Scheduling Problem

Orwa Horace Owiti
*
, Elisha T. Opiyo Omulo, William Okelo-Odongo and Bernard Manderick

School of Computing and informatics

University of Nairobi,

P.O Box 30197 - 00100 GPO Nairobi
*
Email: horaceowiti {at} gmail.com

Abstract--- Job shop scheduling problem is a problem of

scheduling n jobs on m machines with each job having a

set of equal number of operation that are to be process

in unique machine routes. The Job Shop Scheduling

(JSSP) is one of the hardest combinatorial optimization

problems and has been researched over the decade. This

study proposes a new approach to solve a Job Shop

Scheduling problem by structuring the problem as

multi-agent system (MAS) and using 3 game theoretic

algorithms to achieve the scheduling objectives. The

objective of this study is to minimize the makespan. This

approach is meant to achieve feasible schedules within

reasonable time across different problem instances. This

research solves the scheduling of operation on different

machine and defines the sequence of operation

processing on the respective machine. Job Scheduling

problem is a resource allocation problem which is

mainly apparent in manufacturing environment, in

which the jobs are allocated to various machines. Jobs

are the activities and a machine represents the

resources. It is also common in transportation, services

and grid scheduling. The result and performance of the

proposed algorithms are compared against other

conventional algorithms. The comparison is on

benchmark data used across multiple studies on JSSP.

Keywords- Job shop scheduling problem(JSSP), Random

token Game(RTG), Potential Games(PG), Random

Games(RG), Game theory, Makespan, Q-learning,

Reinforcement learning, Multi-agent system.

I. INTRODUCTION

A Scheduling problem can be defined as the problem of

allocation of limited shared resources over time to competing

activities. Scheduling problems have over the years attracted

interest in much research and has been the subject of a

significant amount of literature in the operations research and

artificial intelligence fields. Job-shop scheduling is one of the

most commonly researched about problems in the domain of
scheduling problems. Job-shop scheduling problem is a

scheduling problem where, there are m machines and j jobs

where m>1, each job has a set of operations o and has

associated a processing order assigned for its operations. Job-

Shop scheduling is a known NP-Hard. The objective of this

can be classified under the following;

Minimize the Makespan- The Makespan is the total length of

the schedule, that is, the time it takes all jobs finish processing.
This is formulated as

M= max{ C1……….Cn} (1)

Where,

Cj= the earliest time job j finishes processing.

Minimize Tardiness- In situations where the jobs j have

deadlines dj, tardiness is the duration of time delays past its

deadline. The tardiness of the schedule T is,

 (2)

Minimize lateness- Lateness for a job is defined as,

The Lateness of the schedule L

 (3)

This study concentrate on minimize of makespan for

scheduling problems. We structure the problem as multi-agent
system (MAS) and we introduce three algorithms based on

game theory, reinforcement learning. We describe MAS as a

computerized system composed of multiple interacting

intelligent agents within an environment. Multi-agent systems

can be used to solve problems that are difficult or impossible

for an individual agent or a monolithic system to solve.

Because of its nature it lends its self to solving problems where

distributed decisions are necessary. We define resources (either

machine or jobs operations) as agent and define games in

which they participate to achieve a feasible solution.

A. Problem Description and formulation

We formalize the job shop scheduling problem as follows; A

problem instance P= (M, O, J) in job shop scheduling consists

of

 A set M of Machines,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1421

 A set O of operations o, each associated with a

machine M(o)Є M and having a duration d(o) Є N

and

 A set J of jobs J(o1………….on) (each operation has

exactly one occurrence.)

A given Schedule S for P assigns to every operation o a

starting time T(o): on the relevant machine time

T (o)≥0 for all o Є O

We define an operations processing time P(o) as

P(o)= T (o)+ d(o) (4)

We define a precedent constraint on T (o’)on T (o) such

that

T (o)≥ T (o’)+ d(o') (5)

 for operations o' preceding o in the same job.

Our objective function in the problem is to minimize the

makespan in search of a near optimal schedule. We defined

the Makespan as the time the last machine finishes process the

last operation, therefore the makespan of a schedule M(S), can

be defined as

M(S) = MAX(T(o1)+ d(o1) , T(o2)+ d(o2),……………..T(on)+

d(on)) (6)
To define this as a multi-agent system, We adopt and extend

[Opiyo et al,2009]’s definition of a multi-agent system for

parallel machine scheduling. Same as their study had, we

make the following considerations;

 A multi agent system to be a system that consists of the

agents, the agents act as autonomous entities that can

sense and react to the changes in their environments.

 Game theory as the study of interactions in contexts where

the participants make the choices to affect the overall

status in the game. A game is a structure that consists of a

set of the agents, a set of the agent actions or choices and a
set of the agent payoffs associated with their actions. A

situation where schedules are generated by agents as they

choose machines can be considered as a game [Opiyo et

al. 2008b].

B. Literature review
Job shop scheduling is among the hardest combinatorial

optimization problems and is NP-complete (Garey and

Johnson, 1979). An NP-complete or NP-hard problem is where

no algorithm exists (unless P=NP) that in polynomial time is

able to solve all possible instances of the problem. Hence, the

solution time risks increasing exponentially with the number of

jobs. (Karin Thörnblad, 2013). According to (Karin

Thörnblad, 2013) JSSP remains a NP-complete problem

despite the objective function selected. Over the past forty

years different solution approaches have been proposed to

address the JSSP. These approaches can be categorized in two,
these are;

Optimization Algorithms: These are usually mathematical

programming based approaches that work toward achieving

optimal solutions. According to (Azizizoglu and Kirca 1999a)

they involve the process like formulating Mathematical models
for the problem, and using exact algorithm such as branch-and-

bound algorithms or mathematical formulation to solve the

problem. These methods simply build an optimum solution

from the problem data by following a simple set of rules which

exactly determine the processing order. Optimization

algorithms have been known to solve a given problem

optimally with a requirement that increases polynomially with

respect to the size of the input. Optimization approaches

usually process like formulating Mathematical models for the

problem. These approaches form the earliest of approaches in

solving scheduling problems, The first example of an efficient
method and probably the earliest work in scheduling theory is

(Johnson ,1954) who develops an efficient algorithm for a

simple two machine flow shop whose objective function was to

minimizes the maximum flow time. The two most common

methods in these approaches are ; Branch-and-bound

algorithms and Mathematical formulation.

Approximation Algorithms: These are usually

heuristic/Meta-heuristic algorithms based approaches that aim

to give an approximately near optimal solution rather than the

optimal solution. These methods are usually preferred and are

better for larger problem/dynamic problems/ problems with
multiple constraints as they are more likely to converge to a

good enough solution much earlier than optimization methods

can achieve an optimal solution. In most problem instance

successful algorithm have shown that the solution derived from

approximation approaches are usually close to enough to the

optimal solution. Since the solution is close to optimal and

generated in much less time, (Blum and C.Roli, A. 2003) argue

that the benefit of having using far less resources outweighs

the disadvantage of not arriving to an absolute optimal

solution. The main classification of approximation algorithms,

that is, priority dispatch rules, bottleneck based heuristics,

artificial intelligence and local search methods.

A multi-agent system (M.A.S.) is a computerized system

composed of multiple interacting intelligent agents within an

environment. Multi-agent systems are centered on the concept

of a rational agent. An agent is anything that can perceive its

environment through sensors and act upon that environment

through actuators (Russell and Norvig, 2003). According to (G

WeiB, 2000) interest in multi-agent systems is largely founded

on the insight that many real world problems are best modeled

using a set of agents instead of a single agent. In particular,

multi-agent modeling makes it possible to cope with natural
constraints like the limitations of the processing power of a

single agent or the physical distribution of the data to be

processed and allow us to profit from inherent properties of

distributed systems like robustness, fault tolerance, parallelism

and scalability.

http://en.wikipedia.org/wiki/Intelligent_agent

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1422

(V lesser,1995) state that The current set of multi-agent

applications can be classified into three broad areas. The

firstly, distributed situation assessment Applications, such as

distributed network diagnosis, emphasize how (diagnostic)
agents with different spheres of awareness and control

(network segments)should share their local interpretations to

arrive at consistent and comprehensive explanations and

responses. Secondly distributed expert systems applications,

such as concurrent engineering, emphasize how agents

negotiate over collective solutions (designs) given their

different expertise and criteria. The next generation of

applications alluded to will probably involve all the emphases

of these generic applications and more. Finally as is in our

case, distributed resource planning and allocation applications,

such as distributed factory scheduling, emphasize how
(scheduling) agents (associated with each work cell) should

coordinate their schedules to avoid and resolve conflicts over

resources and to maximize system output.

According to (Neumann and Oskar Morgenstern,1944) ,Game

theory is an economic theory that models interactions between

rational agents as games of two or more players that can

choose from a set of strategies and the corresponding

preferences. It is the mathematical study of interactive decision

making in the sense that the agents involved in the decisions

take into account their own choices and those of others.

Choices are determined by stable preferences concerning the
outcomes of their possible decisions, and agents act

strategically, in other words, they take into account the relation

between their own

II. ALGORITHMS AND METHODS

In this section we define our job Shop algorithm as a Multi-

agent system environment and we formulate three game

theoretic algorithms for solving job shop scheduling problems.

A. Random Token Game
In defining algorithms for parallel machine scheduling [Opiyo

et al, 2008] define random choice games are those in which the

agents make choices at random without considering any other

matters. In their definition an agent are allowed to make moves

in turn and each agent in its turn makes random decision which

machines they would like to be processed on and select the

earliest available time slot on the machine. After all the agents

have made their move the resultant schedule is evaluated. This

process is repeated in several rounds and at the end the most

suitable/ shortest schedule is select as a feasible solution. This

work was able to demonstrate that it is possible to achieve a

relatively feasible schedule using random select of schedule in
a schedule search space. It gives us great insight on the

distribution of solution in the search space. We try to define a

similar algorithm for job shop scheduling. Unlike in parallel

machine scheduling, job shop scheduling as the following

complications when trying to employ a pure random strategy in

selection of a feasible solution from the search space;

Agents/operations are tired to a machine, that is, the machine is

already pre-selected and precedence constraints among agents,

that is the start time S(A)of an agent A ,

S(A) ≥ S(A’)+ T(A’) (7)

Where A’ is the preceding Agent with a processing time of

T(A’).

These constraints limit the flexibility of an agent in machine

selection and put a constraint its selection of a time slot on a

machine. To achieve similar a random selection of solution in a

such space with the above constraints in job shop scheduling,

we introduce a random token notion. The Random token
randomizes the playing turn for the agents. This works as

follows; we divided the game in two stages for all rounds, the

stages are as follows;

Selection Stage; this stage allows random selection of agent

turns which will result in random ordering of agents in the

machine. This works by introducing a random token in the

environment that is assigned to an agent at random. The agent

that has the token is allowed to order itself on its respective
machine waiting queue on an assigned a priority on first come

first serve basis. To formally state this, If Omn Represents an

agent O with processing time on machine m and it was the nth

agent to make a selection on the machine, then its priority

value P(Omn) (lower value signifying higher priority) is;

P(Omn) ≤ P(O’m(n+1)) ≤ P(O’’m(n+2)) (8)

Where O’ and O’’ followed agent O in selection of the

machine in that respective order.

Allocation Stage; the allocation stage was motivated by shift

bottle neck paradigm. In shift Bottleneck, an initial selection of

a schedule is selected as we have done in the selection stage

without actual time share allocation. If we were to evaluate the

schedule as it is now with the agents arranged in a first come

first serve order, the schedule will have multiple delays among

the operations and we will have unnecessary idle time on the

machine The shift bottle neck algorithm recognizes that in a

schedule the is always at least one point/bottleneck that affects

its performance. The aim of the shift bottleneck is slow

minimize/shift the bottle in several iterations. We adopt a

similar iterative approach but in our algorithm it’s the agent
that makes the decision whether to shift or stay based on their

internal states, The agent act for the social good and if an agent

consider itself a possible bottleneck, it shifts self to remove the

bottle neck if not its stays .All the waiting agents with the

highest priority on each machine’s waiting queue are allowed

to a turn, there status changes to active and they are allowed to

evaluate their position. If an agent see that they could be

possible bottlenecks they will choose to move to the back of

the queue assume the lowest priority on the queue and status

change back to waiting. The Agent suspects it may bottleneck

using the following criteria;

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1423

If an agent A has a predecessor and the predecessor has not

been schedule yet (acquired a time share), then A knows it’s a

might be a bottleneck on a machine if there exists other agents

on the machine with a lower priority. In this case the agent will
move to the back of the queue.

If an agent A’ has a predecessor A that has already been

scheduled and its difference between A ‘s expected

processing end time , P(A) and the ‘next available start time’

on the machine M , E(M) is twice as big as the average

processing time of the all the agents queued on the machine,

then the agent suspect itself to be a bottleneck. A Machines

‘next available start time’, E(M), is the sum of all the agents

that have been scheduled on the machine. If a machine M has

3 agents scheduled on it, An agent defined as A(job, machine) .

E(M)= (P(A1M) + P(A2M) + P(A4M))/3 (9)

If (A’1m) is the one evaluating it situation and it has a

predecessor A, the processing end time of A,

P(A) =S(A)+D(A) (10)
Where;-

 S(A) is the processing start time of A,

D(A) is the processing time/duration of A.

A at this point would consider its ‘possible’ processing

start time, S(A’1m) , as equal to the processing end time ,

P(A), of A. S (A’1m) = P(A)

(11)

 (A’1m) consider itself a bottleneck in the schedule, and

move to the back of the machines waiting queue. If the

agent (A’1m) has evaluated its situation and does not
consider itself a bottleneck, the agent will be scheduled on

the machine by selecting the earliest possible start time on

the machine. This would be the greater of P(A)and E(M).

That is, if

P(A)≥ E(M) then S (A’1m) = P(A) else

S (A’1m) = E(M)

The same steps are repeated for each agent for the number of
Iteration needed till all the agents have been successfully

scheduled. A complete selection stage followed by a complete

allocation stage constitute a round in the game, each round

produces a candidate schedule from the search space. At the

end of the game, the makespan m is evaluated of all the

candidate solution s Є S where S represents the search space

and selects a feasible solution f(s) using the following criteria.

f(ms)= MIN(m1 , m2 , m3 ,……….. ms) (12)

Because we achieved a random initial selection by using a

randomized token. We can say that we are selecting schedules
at random from the search space and thus we have achieved a

similar effect that [Opiyo, et al] achieved with their random

games in parallel machine scheduling. Therefore we can state

for a typical job shop problem there is a random distribution of

solution on the search space.

B. Potential Game
[Opiyo et al, 2008] described potential games as those in which

the incentive of all players to change their strategy is expressed

in one global function called the potential function. The
progressive actions of the participants lead to a stable state. In

this section we defined a game that behaves in this way. In our

interpretation we define a function that reward’s/penalize

agents based of the action it takes in the environment. As

agents take actions the gain a bit of appreciation of their

environment as their actions are reinforced by their

reward/penalty system. To achieve this we borrow concepts

from reinforcement learning, which transform our game into a

policy search function, That is, the aim of the game is meant to

teach an agent what to base their actions (what policy to use)

and at the end of a learning phrase is able to make decision on

a certain state based on their experience with on that particular
state. We utilize markov decision process to model our agent

learning as follows;

A Markov Decision Process (MDP) is a 4-tuple [S, A, T, R]

where:

 S = s1, ..., sn denotes a finite set of states;

 Set of actions A, and A(s) Є A, where A(s) is the

finite set of available actions in state s Є A;

 T : S × A × S →[0, 1] is the transition function, T(s,

a, s’) specifies the probability of ending up in state s0

when performing action a in state s;

 R : S × A × S’ → R is the reward function, R(s, a, s’)
denotes the expected reward for the transition from

state s to state s’ after taking action a.

For MDPs, the Markov property assures that the transition

from s to s’ and the corresponding reward R(s, a, s’) depend

only on the state s and the action a, and not on the history of

previous states and actions.

 Q-learning provides a way of determining utility for agent

decisions using the utility function; (13)

)),()','(max(),(),(
'

asQasQrasQasQ
a

Where;

),(asQ
- The utility of state s defined recursively the

update rule above
 - is a learning rate.

- Discount rate of subsequent action.
r- Reward of taking action a on state s

The Psuedocode of the exploration/learning process is as

following

 Initialize Q-values arbitrarily

 for each episode do

 Initialize s

o for each episode step do

 Choose a from s

 Take action a, observe state s’ and r

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1424

 Update

o end for

 end for

 By using Q-learning in a an environment where the agent has

partial observation of the environment, an agent can learn a

finite set of the search space and using the potential function,

derive utility for each its decisions and finally select a series of

decision policy that are beneficial to it. If we utilize Q-learning

we are able to achieve (opiyo, et al, 2008)’s description of a

potential game where there is a global function that guides

agent in decision making. The reward function and utility

function act together to guide the agent in decision making.

Our potential Game environment will therefore consist of the
following;

Actor only agents, these agents will be responsible for

selection of policy during the exploration/learning stage of the

game. The agent at each time step in schedule formation will

employ a certain policy as they seek to achieve a complete

schedule.

A critic only agent will responsible for evaluating the policies

employed by each agent at every time step and will give

feedback to the agents in terms of a reward/penalty. In our

algorithm the critic’s memory structure will also be responsible

for storing the learned utility of each state. Once the

exploration is done information learned by actor agents is used

by them to select successive policies, as they form what they

consider to be an optimal schedule.

Action Policies. These represent dispatch rules, the rules act as

policies that is available for the actor to choose from when

selecting the next action, that is, whenever an actor makes a

specific move, their move has to be based on a specific policy.

At learning stage an actor would tryout one or more policies

and will observe the reward/penalty using that policy on that

particular state. The aim of our global function is to define a

series of policies that an agent can employ that would lead to

an optimal schedule .The different policies the agent can
employ at a specific place are, FIFO- First In First Out ,LIFO-

Last In First Out, SPT-Shortest Processing time and LPT-

Longest Processing time.

Global Potential function. This function is used by the critic

agent to appraise and influence the action of the actors. As we

had earlier demonstrated in the Q-learning algorithm, the

function assigns a reward on agent actions and defines the

utility of each Q-pair. The utility will finally influence the
agents’ decision on which policy to employ at the selection

stage.

Reward structure. The reward structure is used by the critic

agent to appraise the agent actions. A reward is quantification

of how good the selected policy in the current state is. We

define our reward a penalty and quantify it as total process of
all waiting Jobs. This is a sum of the processing time p(o) of

the n jobs that are waiting global dispatch queue and on

waiting queues of machine after all actor agents have selected

a single action. That is,

 (14)

C. Random games

The last game we define is the random games. This game
borrows the same concept as potential games where there are

actor only agents that represent a machine. The MAS

environment is structured as follows; Our environment will

therefore consist of the a global dispatch queue, this is a queue

that holds all jobs before they can be moved to a

machines/agents waiting queue. Jobs move to from the

dispatch queue to the machine queue when there is no

constraint to their processing e.g. they have no predecessor or

their predecessor has already been scheduled for processing.

Our environment also consists of Actor only agents, these

agents are responsible for selecting the next operation to

process.

The only difference between random and potential games is

that in random games the agent does not employ any policy to

base its actions on it simply selects the next operation to

process at random. There the agent explores the search space

randomly. This description of a random game is the same as

described in (opiyo et al, 2008) where game has multiple

presets n number of iterations and in each iteration, an agents
select operations at random from there waiting queues until all

operations have been schedule. This forms a candidate solution

S0 and its makespan is noted. At the end of the game a

candidate solution Si is selected as the feasible solution with

the near optimal schedule. The formula below shows the mode

of selection of this schedule.

 (15)

III. RESULTS AND DISCUSSIONS

For our test we use benchmark problems used in Beasley’s

operation research library complied by Professor Beasley J

(Beasley 2005), this is found on Brunel’s universities

website. The benchmarks offers a list of different

instances of job shop problems complied by different

researchers in there works. The specific instances of

problems selected are from ;

 ABZ 5 problems of 2 sizes proposed by (Adams,

Balas and Zawack 1989). ABZ 5 and ABZ 6 instances

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1425

of size 10×10 with processing times from the intervals

[50,100] and [25,100] respectively and ABZ 7 – 9

instances of size 20×15 and processing times

 la01-la40 are from "Resource constrained project
scheduling: an experimental investigation of heuristic

scheduling techniques" by S. Lawrence.

 Car1-car8 are from "Ordonnancements a contraintes

disjonctives" by J. Carlier.

 orb1-orb10.

We also compare our algorithm to the following algorithms

which are heuristic based.

Table 1: Benchmark algorithms

Problem Sym

bol

Types of

problem

Instance

s Sizes

Handle

“Multi-resource

shop scheduling

with resource

flexibility and

blocking.” (Y Mati

and X Xie, 2011).

MX Job Shop

Scheduli

ng

10 X 10,

instance

only

“Use of an Artificial

Immune System for

Job Shop

Scheduling”, (CAC

Coello et al, 2003)

AIS Job Shop

Scheduli

ng

Multiple

“A contribution to
the stochastic flow

shop scheduling

problem”, (M.

Gourgand et al,

2003)

SD Flow
Shop

Scheduli

ng

Multiple

“Job-Shop with

Generic Time-Lags:

A Heuristic Based

Approach”. (P.

Lacomme, 2011)

GLT Flow

Shop

Scheduli

ng

Job Shop

Scheduli

ng

Multiple

The following are the sample results on the benchmark

problems

Figure: 1 Random games performance

0

5

10

15

20

25

30

35

40

45

50

ab
z5

ab
z8

ca
r1

ca
r3

ca
r5

ca
r7

la
0

2

la
0

7

la
0

9

la
16

la
18

la
2

8

la
3

6

la
3

9

o
rb

02

o
rb

04

Er
ro

r
R

at
e

Random Games

100 rounds 1000 rounds

Figure: 2 Potential games performance

0

20

40

60

ab
z5

ab
z8

ca
r1

ca
r3

ca
r5

ca
r7

la
0

2

la
0

7

la
0

9

la
1

6

la
1

8

la
2

8

la
3

6

la
3

9

o
rb

0
2

o
rb

0
4

Er
ro

r
R

at
e

Potential game

2 stategies (100 rounds)

All 4 strategies(100 rounds)

2 strategies only(1000 rounds)

4 strategies(1000 rounds)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1426

Figure: 3 Random token games performance

Table 2: Algorithm comparisons

 PG AIS MX GTL RG RTG

la01 10 X 5 15 16 32 31 15 8

la02 10 X 5 22 18 37 37 18 0

la05 10 X 5 5 4 25 48 9 0

abz5 10 X10 9 19 38 12 14

la16 10 X10 12 16 28 69 14 13

la17 10 X10 17 16 30 65 20 17

la36 15 X 15 28 23 62 38 25 33

la38 15 X 15 33 27 65 42 24 38

abz7 15 X 20 28 26 21 22

abz8 15 X 20 23 25 25 26

la07 15 X 5 6 8 36 26 15 9

la08 15 X 5 14 12 46 17 15

la09 15 X 5 13 7 45 16 5

la10 15 X 5 8 2 36 7 6

la28 20 X 10 28 28 96 64 26 35

la29 20 X 10 26 22 89 25 34

orb03 10 X10 32 27 30 12 2

orb04 10 X 10 27 21 28 28 9

car1 11 X 5 18 96 19 39

car2 13 X 4 30 17 35

car3 12 X 5 31 17 35

car4 14 X 4 10 15 32

car5 10 X 6 34 77 22 30

car6 8 X 9 24 16 14

car7 7 X 7 25 67 25 25

Our results provided the following insights

The potential games algorithm perform relative better with

more strategies used. This is because it increases breadth of

choice and actions available to an agent. This increases the
learning experience of an agent and increases the chance of

learning a more favorable solution. The different in quality of

solution produce when using only SPT and LPT compared to

all four strategies, increase with the sizes of the instance. This

is because using only 2 strategies limits the game to a subset of

solutions in the search space. Limiting the experience scope of

the agent.

Both the Potential game and Random games do not show

improvement the quality of solution designed when the number

of paths was increased significantly from 100 to 1000. This is

because the quality of schedule generated for these more on the
number of strategies used as they increase the breadth of

choose or scope of learning for the agent. Increasing the

number learned paths learned without increasing the number

of strategies available to the agents only leads the agent to

learn multiple similar schedules, thus the agents is already

limited to a certain range quality of solutions they can achieve.

Increasing the number of rounds in the random token game

does show improvement in the quality of schedule generated.

This is because it increases the number of solution the

algorithms has to choose from the search space increase the

probability of selecting a more favorable solution.

The tests on Potential and Random games also shows

relatively poor performance on flow shop problems(car1-car7)

compared to the job shop problem this can be attributed to the

fact that because of the nature of a flow shop problem which

leads to some agents having a larger action set(operations to

choose from) than others. Machines/agents the process the

initial operations of the jobs end up being the only ones

playing at the beginning of the game. The lower the number of

agent learning at each stage reduces the learning experience

and also reduces the chances of achieving favorable solutions.

The test shows that quality of solution of Random Games and

Potential Games are affecting by the sizes of the problem
instance. Quality reduces when dealing with large problem

instances. This can be attributed to the fact increasing the size

of instance significantly increases the size of search space.

Since this games are based on learning a subset of the search

space based on the strategies selected and searching for a

solution within that subset, the large the search space the

harder it is to get a quality subset.

Only the Random Token Game doesn’t show better adaptation

to change in instance problem size. This can be attributed to

the fact that it works by selecting solutions from the workspace

at random and refining them, thus not greatly affected by the
size of the search space.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 03 – Issue 06, November 2014

www.ijcit.com 1427

Our algorithms have shown relatively good performance

compared to the selected benchmark problems. On average we

achieved better or equal performance across all problem

instances.

IV. CONCLUSIONS

This paper deals with defining three game theoretic algorithms

for solving job shop scheduling problems. Our algorithms have

shown relatively good performance on the benchmark data and

we were able to converge to a feasible solution in relatively

good time. We have also been able to demonstrate by defining

the job shop problem as a multi-agent system we are able to

provide algorithms that provide good solution across different

sizes of problem instances. From the study we can recommend

the following further studies.

 This paper has dealt with job shop scheduling where
scheduling is static and job are scheduled as a batch.

In the real world problems tend to be further research

work can be done to the algorithms to apply the two

dynamic job shop scheduling.

 Our study choose a basic where of structuring the

reward/reinforcement function based on total

processing time of un-scheduled jobs at any given

point. Further work can be done to refine the

algorithm by defining better reward structure to

improve the learning of an agent.

REFERENCES

[1] A. AitZai and M. Boudhar, (2013). “Parallel branch-and-bound and

parallel PSO for the job shop sche duling with blocking”, Int. J.

Operational Research, vol. 16, No. 1.

[2] Adams J, Balas E, Zawack D. (1988).The shifting bottleneck procedure

for job shop scheduling. Management Science, 34(3): 391-401.

[3] Anant Singh Jain and Sheik Meeran, (1998). A State-Of-The-Art Review

Of Job-Shop Scheduling Techniques Department of Applied Physics,

Electronic and Mechanical Engineering University of Dundee, Dundee,

Scotland, UK.

[4] Balas E, Lenstra J K, Vazacopoulos A. (1995).The one machine problem

with delayed precedence constraints and its use in job shop scheduling.

Management Science, 41(1):94{109.

[5] Beasley J (2005) Or-library

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

[6] Blum, C.; Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison 35 (3). ACM Computing Surveys.

pp. 268–308.

[7] CAC Coello et al, (2003), “Use of an Artificial Immune System for Job

Shop Scheduling” .Department of electrical engineering. National

Polytechnic Institute, Mexico.

[8] Chu, C., Portmann, M. C. and Proth, J. M. (1992) A Splitting-Up

Approach to Simplify Job-Shop Scheduling Problems, International

Journal of Production Research 30(4), 859-870.

[9] Elisha T. O. Opiyo, Erick Ayienga, Katherine Getao, William Okello-

Odongo, Bernard Manderick, and Ann Nowé. Game Theoretic Multi-

Agent Systems Scheduler for Parallel Machines. International Journal of

Computing and ICT Research, Special Issue Vol. 1, No. 1, pp. 21-27

[10] G WeiB. (2009) Learning to Coordinate Actions in multi-agent Systems,

Institut fur lnformatik, Technische Universitat Miinchen Arcisstr. 21,

8000 Miinchen 2, Germany

[11] G Weiss (2013). A Modern Approach to Distributed Modern Approach

to Artificial Intelligence, Multiagent Systems , MIT press , Cambridge ,

Massachusetts, USA.

[12] Garey, M. R. and Johnson, D. S. (1979) Computers and Intertractability:

A Guide to the Theory of NPCompleteness, W. H. Freeman, San

Francisco.

[13] H. Chen, P.B. Luh, (2003). European Journal of Operational Research

149 (2003) 499–512-2003

[14] J.F. Muth and G.L. Thompson. (1963) Industrial Scheduling. Prentice-

Hall, Englewood Cliffs, N.J.

[15] Johnson, S. M. (1954). Optimal Two- and Three-Stage Production

Schedules with Set-Up Times Included, Naval Research Logistics

Quarterly, vol 1, 61-68.

[16] Karin Thörnblad(2013), Mathematical Optimization in Flexible Job Shop

Scheduling: Modelling, Analysis, and Case Studies, Department of

Mathematical Sciences, Chalmers University of Technology and the

University of Gothenburg.

[17] M. Gourgand et al, 2003. A contribution to the stochastic flow shop

scheduling problem, European Journal of Operational Research 151

(2003) 415–43

[18] Manne, A. S. (1960) On the Job-Shop Scheduling Problem, Operations

Research, vol 8, 219-223.

[19] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and

Teller, E., (1953), “Equation of State Calculations by Fast Computing

Machines”, The Journal of Chemical Physics, Vol. 21, Issue 6, pp. 1087-

1092.

[20] Nikos Vlassis(2005). A Concise Introduction to Multiagent Systems and

Distributed AI, Intelligent autonomous Systems Informatics Institute

University of Amsterdam.

[21] Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory.

MIT Press.

[22] P. Brucker and O. Thiele. (1996). A branch and bound method for the

general shop problem with sequence-dependent setup times. Operations

Research Spektrum, 18:145-161.

[23] P. Brucker, P. Jurisch, and B. Sievers. (1994). A fast branch and bound

algorithm for the job-shop scheduling problem. Discrete Applied

Mathematics, 49:107-127.

[24] P. Lacomme, N. Tchernev and M.J. Huguet. (2012). Job-Shop with

Generic Time-Lags: A Heuristic Based Approach”. 9
th

International

Conference of Modeling, Optimization and Simulation - MOSIM’12

June 06-08, 2012 – Bordeaux - France

[25] Panwalkar, S., Iskander, (1977). A Survey of Scheduling Rules.

Operations Research 25(1) 45–61

[26] Pinedo M, Singer M.(1995) A shifting bottleneck heuristic for

minimizing the total weighted tardiness in a job shop. Naval Research

Logistics, 46(1): 1-17.

[27] R. Sutton and A. Barto. Reinforcement Learning. An Introduction. MIT

Press/A Bradford Book, Cambridge, USA, 1998.

[28] S. Russell and P. Norvig(2003). Artificial Intelligence { A Modern

Approach. Prentice Hall, Englewood Cliffs, USA.

[29] Thomas Gabel. (2009).Multi-Agent Reinforcement Learning,

Approaches for Distributed,Job-Shop Scheduling Problems, Tag der

wissenschaftlichen Aussprache: 26.06.

[30] Uzsoy R, Wang C S. Performance of decomposition procedures for job

shop scheduling problems with bottleneck machines. International

Journal of Production Research, 2000, 38(6): 1271-1286.

[31] V Lesser(1995), Mullti-agent. Systems: An Emerging Sub-discipline of

AI. ACM Computing Surveys, Vol 27, No 3, September 1995

[32] von Neumann, J., Morgenstern, O., Theory of Games and Economic

Behaviour, Princeton University Press, 1944.

[33] Y Mati and X Xie “Multi-resource shop scheduling with resource

flexibility and blocking.” (2011) ,IEEE transactions on automation

science and engineering.

[34] Yailen Martínez Jiménez. (2012). A Generic Multi-Agent Reinforcement

Learning Approach for Scheduling Problems. Brussels University Press

[35] Zhang, C.Y., P. Li, Y. Rao, Z. Guan. 2008. A very fast TS/SA algorithm

for the job shop scheduling problem. Computers and Operations

Research 35 282–294.

http://publications.lib.chalmers.se/record/index.xsql?pubid=181850&lang=en
http://publications.lib.chalmers.se/record/index.xsql?pubid=181850&lang=en

