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Abstract— Answer set programming (ASP) is a form of 

declarative programming that is emerged from logic 

programming with negation and reasoning formalism that is 

based on the answer set semantics [1]. ASP is suited for solving 

hard combinatorial search problems, and has many applications, 

such as: bioinformatics [3, 4], configuration [5], database 

integration [6],  diagnosis [7], hardware design [8], insurance 

industry [9], phylogenesis  [10, 11], security protocols [12]  and 

model checking [13], to name some.  

ASP has a rich yet simple modeling language with high 

performance solving capabilities, ability to reason with 

incomplete information, existence of well-developed 

mathematical theory and programming. A number of solvers 

have been proposed, such as: smodels [14, 15, 22], dlv [16], 

cmodels [15], assat [18, 24], and clasp [19]. ASP programs look 

like Prolog programs; however, they are treated in a different 

computation mechanism. ASP uses model generation instead of 
query evaluation as in Prolog. (Abstract) 
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I.  INTRODUCTION 

Answer set programming (ASP) is a form of declarative 

programming that is emerged from logic programming with 

negation and reasoning formalism that is based on the answer 

set semantics [1]. ASP is considered in the late 1990s as a new 
programming paradigm [2]. This programming paradigm is 

suited for solving hard combinatorial search problems, and has 

many applications, such as: bioinformatics [3, 4], 

configuration [5], database integration [6], diagnosis [7], 

hardware design [8], insurance industry [9], phylogenesis  [10, 

11], security protocols [12]  and model checking [13], to name 

some.  
ASP has a rich yet simple modeling language with high 

performance solving capabilities, ability to reason with 
incomplete information, existence of well-developed 
mathematical theory and programming. A number of solvers 
have been proposed, such as: smodels [14, 15, 22], dlv [16], 
cmodels [17], assat [18, 24], and clasp [19]. In ASP, a search 
problem is represented by a logic program of which its answer 
sets correspond to solutions. An answer set solver is used for 
finding answer sets of the problem. ASP programs look like 
Prolog programs; however, they are treated in a different 
computation mechanism. ASP uses model generation instead of 
query evaluation as in Prolog. 

II. BACKGROUND 

We briefly recall the basics about ASP. Let us consider a 

language composed of a set of propositional symbols (atoms) 

ᴀ. An ASP-program is a collection of rules of the form: 
 

 H  L1, …, Lm, not Lm+1, …, not Lm+n. 
 

Where H is an atom, m  0, n  0, and for each 0 ≤ i ≤ m+n, Li 
is an atom. The symbol “not” stands for negation-as-failure. 

Given a rule r as in (1), we let head(r) denotes {H}, body(r) 

denotes the body of the rule r {L1, … Lm, not Lm+1, ... not 

Lm+n}, body+ (r) = {L1, …, Lm}, and body-(r) = {Lm+1, …, 

Lm+n}. If the head(r) =  then the rule r is called a constraint. 

If the body(r) =  then the rule r is called a fact. A program Π 
consists of rules of the form (1) is called a normal logic 

program. If all rules in a logic program have body-(r) =  then 
the logic program is called basic logic program or datalog 

program. All atoms in the logic program  is called Atms(). 
 

For a basic logic program , a set of atoms X is closed under 

 if for any rule r  , head(r)  X whenever body+(r)  X. 

The answer set of  is defined as the smallest set of atoms 

that is closed under  this is denoted as Cn(). Answer set 
can be extended to normal logic programs as in [1]. First, let 

us introduce the reduct of a normal logic program  as 
follows:  

 

X = {head(r)  body+ (r) | r  , body- (r)  X = } 
 

X is calculated by deleting: 

 All rules having a not A in its body with A  X, 
then 

 All negative atoms of the form not A from the 

bodies of the remaining rules. 

Clearly, X is a basic logic program, and its answer set is 

defined as Cn(X). 
 

Give a logic program  with answer set X. If p  X, then we 
say that p is true under answer set X, otherwise p is false 

under answer set X. If p  X then there is at least one rule r 

, such that: p  head(r) and body+ (r)  X and body-(r) X 

= . We say that rule r supports atom p or p is provable by rule 
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r in  under answer set X. If {p}  X= then there is no rule 

supports p or p is not probable in  under answer set X. 
 

For illustration, consider the following program: 

1 = {p  not q.  

            q  not p. 
           } 

There are four answer set candidates for 1: {{p}, {q}, {p, q}, 

}. To verify which of the four candidates are answer sets, we 
use the following table. 

 

X 1 Cn(1
X) X=Cn(1

X) 

 {p.  q.} {p, q} No 

{p} {p.} {p} Yes 

{q} {q.} {q} Yes 

{p, q}   No 

 

Therefore, we have two answer sets: {p} and {q}. 
Another example is the following program: 

 2 = {p  not p.} 

We have two answer set candidates: { {p}, }. Verifying 
which of the two candidates is an answer set:  

 

X Π1 Cn(Π1
X) X=Cn(Π1

X) 

 {p.} {p} No 

{p}   No 

 

Therefore, we have no answer set for the 2. The rule in 2 is 

called integrity constraint and can be written as  p, which 
means eliminate any candidate answer set that contains the 

atom p.  
 

Consider the following program:  

 

 3 = {p  not q. 

                         q  not p. 

                p. } 

There are four answer set candidates {, {p}, {q}, {p, q}}. 

The rule  p eliminates all answer set candidates that contain 

the atom p. So, we are left with two answer set candidates {, 

{q}}. Clearly, program 3 has one answer set {q}. 

 

Let  be a normal logic program and let G() = (Atms(), E) 

be the positive atom dependency graph of . If (a, b)  E, 

then there is a rule r  , such that a  head(r) and b  

body+(r). A loop in , is the set of atoms L  Atms() such 

that it induces a strongly connected subgraph of G(). Recall 
that a strongly connected graph is a graph where there is a 

path of non-zero length between every two atoms in the graph. 

We denote the set of all loops in  by Loop(). 
The process of eliminating all variables from a logic program 
and converting it into propositional logic program is called 

grounding. For example, Let 4 = {d(1). d(2).  p(X)  d(X)}, 

then grounding of 4 is: {d(1).  d(2).   p(1)  d(1).  p(2)  

d(2). }. The predicate d(1) and d(2) are called domain 

predicate, which are predicates used to find all variable 

binding. While Atom p(X) is not a domain predicate.  

 

III. MODELING 

To write a program Π in ASP, we divide Π into two sets of 

rules: (1) generate rules which generate all possible answer 

sets, and (2) integrity constraint rules which eliminate 

unwanted answer sets. As an example, consider the n-queen 

search problem. The goal is to place an n-queen on an nxn 
chessboard, so that no two queens appear on the same row, 

column or diagonal.  

To define the board length and width, the following fact is 

defined: 

 board(1..N, 1..N). 

 

Here, NxN facts were defined. Alternatively, to reduce the 

number of facts, we can define the board as: 

 d(1..N).  

 

Which define both the length of the board and the width of the 
board. 

The generate set of rules is as follows: 

 

 queenOn(X, Y)  d(X), d(Y), not empty(X, Y). 

 empty(X,Y)  d(X), d(Y), not queenOn(X,T). 
 

The two rules above select either to position the queen on 

location (X, Y) on the chessboard (represented by the 

predicate queenOn(X,Y)) or leave the location (X,Y) empty 

(i.e. with no queen on the location (X,Y), represented by the 

predicate empty(X,Y)). 

The two rules are similar to rules in Π1 where atom p is 

replaced by atom queenOn(X,Y) and atom q is replaced by 

empty(X,Y).  
 

For a 2x2 chessboard, there will be 16 answer set candidates, 

among them are the following: 

 

 

empty(1,1), empty(1,2), empty(2,1), empty(2,2) 

 

 

 

  

  
 

 

empty(1,1), queenOn(1,2), empty(2,1), 

empty(2,2) 
 

 

 Q 

  
 

 

empty(1,1), queenOn(1,2), queenOn(2,1), 

empty(2,2) 

 

 

 Q 

Q  
 

 

queenOn(1,1), queenOn(1,2), queenOn(2,1), 

queenOn(2,2) 

 

 

Q Q 

Q Q 
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The following integrity constraint eliminates all answer sets 

that contain two queens positioned in the same row with 

different column locations. 

 

 queenOn(X, Y), d(X), d(Y), queenOn(X, Y1), 

d(Y1), Y ≠ Y1. 

 

The following integrity constraint eliminates all answer sets 

that contain two queens positioned in the same column with 

different row locations. 
 

 queenOn(X,Y), d(X), d(Y), 

queenOn(X1, Y), d(X1), X ≠ X1. 

The last integrity constraint eliminates all answer sets that two 

queens positioned on the diagonal. 

 

 queenOn(X,Y), d(X), d(Y), queenOn(X1, Y1), 

d(X1), d(Y1), |X-X1| ≠ |Y-Y1|. 

 

The following integrity constraint is needed to make sure that 

every row has a queen placed in some column number.  

 

rowHasQueen(X)  queenOn(X, Y), d(X), d(Y). (2) 

 rowHasQueen(X), d(X).  (3) 

 
Rule (2) finds all row numbers that have queen in some 

column for that row. Integrity constraint (3) eliminates all 

answer sets that contains rows that do not have queen in that 

row of the chessboard. 

IV. ANSWER SET EXTENSIONS 

Various extensions to the basic paradigm exists, in the 

following subsections many answer set extensions is 

presented. 

 

Classical Negation: 
In reference [20], another kind of negation is defined which 

is classical negation. It is represented as  or. A literal is 

either an atom p or a classical negated atom p. A logic 
program with literals is called an extended logic program. An 

extended logic program is contradictory if both p and p are 

derivable. Classical negation can be eliminated by replacing p 

with a new atom p' and adding the integrity constraint  p, p'. 
Then we have a normal logic program and the answer set is 
defined in the same way as defined in normal logic programs. 
The difference between negation as failure not p and classical 

p is that, in case of negation as failure not p in a logic 

program , if p is not supported by any rule in  under answer 
set X, then by closed world assumption not p is derivable from 

 under answer set X. For example, consider the logic 

program 5 = {cross  not car}, the answer set X of 4 is 

{cross}. This is because car is not supported in 5. So, cross is 

true under answer set X of 5. However, in case of classical 

negation p, then p belongs to answer set X, if p is 

supported in  under answer set X. For example, consider the 

logic program 6 = {cross  car}, then the answer set X is  

since car is not supported in 6 under answer set X. 

therefore, atom cross is not supported in 6 under answer set 
X. Using classical negation, an atom fails if its negation 
succeeds. Using negation as failure, an atom fails if it does not 
succeed.  

Disjunctive Logic Programs 

Disjunctive logic program is a normal logic program where 

the head of the rule is a disjunctive of atoms [20]. The rules 

are of the form: 

h1 | h2  | … | hk  L1, …, Lm, not Lm+1, …, Lm+n. 
 

To define answer set models, first we consider a disjunctive 

program  without negation as failure “not”, rules are of the 
form: 

h1 | h2  | … | hk  L1, …, Lm. 
 

The minimum set of atoms X that is closed under  is an 

answer set. Therefore, if for every rule r , if body(r)  X, 

then for some 0  i  k, Li  X. Now, consider a program with 
disjunctive rules and contains negation as failure “not” in the 

body. Let X be a set of atoms, define X to be disjunctive 
program by: 

 deleting all rules r   where not L  body(r) and 

L  X, then  

 Delete remaining not L from the rest of the rules' 

bodies. 
 

Clearly, X is disjunctive logic program with no negation as 
failure “not”. X is an answer set if X is a minimal set that is 

closed under X. for example, let 7 = {p | q  }, then 6 
has two answer sets {p} and {q}. The set {p, q} is not an 

answer set of 7 since it is not a minimal set closed under 7.  
 

Cardinality Atoms: 

Another extension is a cardinality atom [34, 35] which is 

as follows: 

L {L1, …, Lm} U 

 

Where L is a lower bound integer number and U is an upper 

bound integer. The semantics of a cardinality atom is that, if 

the number of atoms that belong to an answer set X of a logic 

program  are between the lower bound L and upper bound U 
(inclusive), then the cardinality atom is considered true under 

the answer set X. Otherwise, the cardinality atom is 

considered false under the answer set X. Rules that have 
cardinality atom in the body of a rule are called cardinality 

rule. Rules that have cardinality atom in the head of the rule is 

called a choice rule (see below). 
 

Weighted Atoms: 

Weighted atoms [34, 35] are of the form: 

 

L [ L1=a1, …, Lm=am ]U 

 

Where L is a lower weight bound integer number, and U is an 

upper weight bound integer. Each literal Li where 1  i  m, in 
the weighted atom, have integer weights ai. The semantics of a 
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weighted atom is that, if the sum of weights of the literals that 

are in answer set X is between the lower bound L and the 

upper bound U (inclusive), then the weighted atom is 

considered true under the answer set X. Otherwise, the 

weighted atom is considered false under the answer set X. 

Rules that have weighted atom in the body of a rule are called 

weighted rule. 
 

Choice Rules: 

Choice rules [34, 35] have cardinality atom or weighted 

atom in the head of a rule. Choice rule is of two forms: 

 

L { h1, …, hm } U  body+, body-. (4)      
Or 

L [h1=a1, …, hm=am] U  body+, body- (5) 
 

Where L is a lower bound integer and U is the upper bound 

integer, and for each 0  i m, each ai is an integer represents 
the weight of the atom hi. The semantic of choice rules is as 

follows: for an answer set X, if body+  X and body-  X = , 
then: 

 In case of rules of the form (4), an arbitrary 

number of atoms between lower bound L and upper 

bound U (inclusive) from the atoms {h1, …, hm} is in 

the answer set X. 

 In case of rules of the form (5), an arbitrary atoms 

with sum of their weights is between the lower bound 

L and the upper bound U (inclusive) from the atoms { 

h1=a1, …, hm=am} is in the answer set. 

 

Conditional Literals: 
A conditional literal [34, 35] is of the form: 

 

p(X) : q(X) 

 

Where p(X) is a literal and q (X) is a domain predicate. The 

conditional literal is expanded to a conjunction of literals. For 

example, consider the following program: 

8 = { d(1).    d(2). 
 

            h  p(X) : d(X). 
                                             } 

Program 8 is expanded as follows: 
 

d(1).   d(2). 

h  p(1), p(2). 
  

Weak Constraint: 

Weak constraints [33] are rules that should be satisfied but 
their violation in an answer set X does not reject the answer 

set X. The answer sets of a logic program  with a set W of 
weak constraints are those answer sets of X which minimize 

the number of violated weak constraints.  Weak constraints 

can be weighted according to their importance (the higher the 

weight, the more important the constraint). In the presence of 

weights, the answer sets minimize the sum of the weights of 

the violated weak constraints. Weak constraints can also be 

prioritized. Under prioritization, the semantics minimizes the 

violation of the constraints of the highest priority level first; 

then the lower priority levels are considered one after the other 

in descending order. 

 

Syntactically, weak constraints are specified as follows. 

 

 L1, …, Lm, not Lm+1, …, not Lm+n    [Weight:Level] 
 

Where Weight and Level are integers, Li are literals, for 0  i 

 m+n.   

 

Ordered Disjunction Rules: 

Logic programs with ordered disjunction rules are an 

extension to normal logic programs. The new connective  
that represents ordered disjunction allowed to appear in the 

head of rules only [31, 32]. The ordered disjunction rule is of 

the form: 
 

C1  C2  …  Cn  body
+
, body

-
. 

 

For an answer set X of a logic program . If the rule is in ,  

body+  X and body-  X= , then try to include C1 in the 
answer set X if possible, otherwise try to include C2 in answer 

set X if possible, ... otherwise try to include Cn in answer set  

X. For example, Let  

9 = {p  q  not r,  

         s  not s, p } 
 

Then the answer set of 9 is ${p}$. On the other hand, the 
program:  

10 = {p  q  not r,  

         s  not s, p} 
has an answer set of {q}, since we cannot find an answer set 
{p} because of the second rule. 
 

Aggregate Functions: 

Aggregate functions like sum, count, max, and min, has 
been added to answer set [21]. These arithmetic operators 

increase the expressiveness of answer set. In [21], A symbolic 

set is a pair {Vars: Conj}, where Vars is a list of variables and 

Conj is a conjunction of literals (p or p). An aggregate 
function is of the form f(S), where S is a symbolic set and f is 

arithmetic operator that belongs to {sum, count, max, min}. 

An aggregate atom is of the form:  

 

L  ∆1 f(S) ∆2 R 

 

Where f(S) is an aggregate function, ∆1, ∆2  {=, , , , }, 
and L and R are terms (either a constant of a variable) called 

guard of an aggregate function. One of “L ∆1” or “∆2 R” can 

be omitted. 

A (DLPA) rule is of the form: 

a1  …  an  b1, …, bk, not bk+1, …, not bm 
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Where a1, …, an are atoms and b1, …, bm are atoms or 
aggregate atom. A (DLPA) program is a set (DLPA) rules. As 
an example, consider the following program with some facts 
about a(X, Y) and b(X). 

11 = { q(1)  p(2, 2). 

    q(2)  p(2, 1). 

   t(X)  q(X), #sum{Y: p(X, Y)} > 1. 

 } 

Ground(11) is: 

{ q(1)  p(2, 2). 

    q(2)  p(2, 1). 

   t(1)  q(1), #sum{Y: p(1, Y)} > 1. 

   t(2)  q(2), #sum{Y: p(2, Y)} > 1. 

 } 

The first two rules of program 11 will generate 4 answer sets 
candidates: {{q(1), q(2)}, {q(1), p(2, 1)}, (p(2, 2), q(2)}, {p(2, 
2), p(2, 1)}}. From the third rule atom t(1) will not be in any 
answer set candidates since sum{Y: p(1, Y)} is always zero not 
greater than 1. From the last rule t(2) will be in an answer set 
when q(2) is an answer set and sum{Y: p(2, Y)} is greater than 

one. Therefore, program 11 has four answer set {{q(1), q(2)}, 
{q(1), p(2, 1)}, {t(2), p(2, 2), q(2)}, {p(2, 2), p(2, 1)}}. 

A rule r is safe if the following conditions hold: (i) each 
variable appears in the head of the rule, must also appear in a 
positive atom in the body of rule r. (ii) each variable appears in 
the symbolic set {Vars: Conjs} must appear in a positive literal 
Conjs. (iii) each guard of an aggregate function must be either 
a constant or a variable that appear in the head of the rule r. 

V. ANSWER SET SYSTEMS 

Several answer set computation systems have been developed, 
such as: smodels, dlv, assat, cmodels, and clasp. The 
computation of answer sets is done in two phases: (i) 

grounding of the logic program (): which is eliminating 

variables to obtain a propositional program ground().  (ii) 
Computation of answer sets on the propositional program 

ground(). 

 

Logic 

program   

 

Grounder 

Propositional 

logic 

program 

Answer 
set solver 

 

Answer 

sets(s) 
 

Figure 1, computation of answer set of a logic programs. 

 

The first phase (grounding) is done using lparse program or 
gringo or the grounder in dlv.  The program lparse and gringo 
both can handle classical negation, disjunction logic programs, 
cardinality atoms, weight atoms, choice rules, conditional 
literals, and aggregates. The grounder of dlv handles classical 
negation, disjunction logic programs, weak constraint, and 

aggregates. We will consider the second phase which is the 
generation of answer set of a propositional logic program. The 
normal logic programs are considered only for simplicity. 
Therefore, all atoms in the answer set must appear in the head 
of some rule in the logic program. For a normal logic program 

, a partial model  is a 3-valued model with true atoms, 
false atoms and undefined atoms. So,  

= <T, F, U> 

Where T is the true atoms, F is the false atoms, and U is the 
undefined atoms. A total model is a partial model where all 

atoms Atms() is either true or false and the undefined atoms 

is empty, i.e. = <T, F, > where TF = Atms(). The 
algorithm is as follows: we start with all atoms appears in the 

logic program as undefined atoms U.  Therefore,  = <, , 
Atms>. Then we use propagation techniques to extend the 
partial order to increase the number of true and false atoms. If 

the extended partial model is a total model (i.e. U=) then it is 
an answer set. If the extended partial model contains an atom 

that is true and false at the same time (i.e. T  F = ), then a 
contradictory partial model occur and no answer set situation 
occurred. Otherwise, an atom is selected non-deterministically 
from the undefined atoms U and branch on its true or false 
truth value. This is done recursively by adding the selected 
atom to the partial model as true atom once and again as false 
atom. There are many ASP heuristics to select the atom from 
the set U to branch on. The ASP heuristics tries to minimize 
the depth of the search tree in finding the answer sets. Please, 
see the [23] for more information about ASP heuristics. 

The smodels systems: The smodels [14] algorithms is as 
follows: 

Smodels(T, F, U) 

1. Expand(T, F, U) 

2. If T  F   then return fail. 

3. If U= then T is an answer set, print T 

4. A = select(U) 

5. Smodels(T  {A}, F, U \ {A}); 

6. Smodels(T, F  {A}, U \ {A}); 
 

The smodels function takes the partial model which is the three 
sets: the true atoms T, false atoms F and the undefined atoms 
U. Then it calls the Expand function in step (1), which uses the 
propagation techniques to increase the number of true atoms 
and false atoms. In step 2, the function checks that if the partial 
model is contradictory, it return fail. In step 3, the function 
checks if the partial model is a total model, then it prints that 
model as answer set. In step 4, the function selects an atom A 
from the undefined atom. In step 5, it calls itself recursively to 

try to find answer set T  {A}. In step 6, the function smodels 

calls itself recursively to try to find answer set with F  {A}. 

Initially, smodels is called with T=, F= and U=Atms. 

The dlv system: The dlv system is a deductive database 
system, based on disjunctive logic programming, which offers 
front-ends to several advanced KR formalisms. The system can 
handle weak constraints, aggregates functions, functions, lists 
and sets. You can call dlv from java programs and you can call 
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c++ functions from dlv. An outline of the general architecture 
of the dlv system is shown in Figure 2. The input logic 

program () is fed into the instantiator, which eliminates the 
variables and generates the propositional logic program 

ground().  This process is called instantiator or grounding. 
Then the model generator generates an answer set candidate 
which is verified by the model checker whether it is an answer 
set. The algorithm for Model generator is as follows:  

ModelGenerator (T, F, U): 

1. <T, F, U>= Propagate(T, F, U); 

2. If (T  F = ) then fail. 

3. If (U=) then print answer set T. 
4. L = select(U) 

5. ModelGenerator(T  {L}, F, U \ {L}); 

6. ModelGenerator(T, F  {L}, U \ {L}); 
 

The algorithm of Model generator is similar to the smodels 

function.  

 
The assat and cmodels systems: Both answer set solver assat 

and cmodels converting the answer set logic program into 

propositional satisfiability (SAT) program. This reduces the 

problem of computing answer sets to SAT problem (using 

Clark’s completion [25]), then invoke any of the SAT solver to 
generate the answer sets. To handle the normal logic programs, 

a loop formula is added [18, 24]. However, whenever a logic 

program is mapped to equivalent propositional formulas, the 

size might grow exponentially [26]. The formal definition of 

loop formula is as follows. Let  be a normal logic program, 

assume a set of atoms L  Atms(), we define an external  

support of L for  as: ES(L) = {r   | head(r)  L, body(r) 

 L=}. Then the loop formula of a loop L for  is: 

LF(L)={ALArES(L)(Abody+(r) A  Abody-(r) A) 

For example: Let  

 = {a  b, not c. 

         b  a, not d. 

         a  e. 
       } 

Then the loop L of  is {a, b}, then the external support for L 

is: ES(L) = {a  e}. The loop formula LF(L) is:  

{a, b  e}. 
 

The Postdam system: The postdam answer set solving 

collection is a combination of grounder called gringo and an 

answer set solver called clasp [27, 28]. The primary clasp 

algorithm has been developed for answer set solving based on 

conflict-driven nogood learning [30]. Assignments and 

nogoods are set of assigned atoms, i.e. entities of the form Tp 

or Fp denoting that atom p has been assigned true or false, 

respectively. Given an assignment A, we denote AT = {p | Tp 

 A} and AF = {p | Fp  A}. The assignments A is a total 

assignment if it assign a truth value to all atoms in Atms(), 
otherwise it is a partial assignment. Given an assignment A 

and a nogood , we say that  is violated if   A. In turn, a 

partial assignment A is a solution for a set of nogoods   if no 

   is violated by A.  
The concept of nogood can be also used during 

deterministic propagation phases (a.k.a. unit propagation) to 

determine additional assignments. Given a nogood  and a 

partial assignment A such that \A = {Fp} (\A = {Tp}), then 
we can infer the need to add Tp (Fp) to A in order to avoid 

violation of . In the context of ASP computation, we 
distinguish two types of nogoods: Clark’s completion nogoods 

[25, 30], which are derived from Clark’s completion of a logic 

program (denoted with cc the set of Clark’s completion 

nogoods for the program ), and loop formula nogoods [25], 

which are derived from the loop formula of  (denoted by 

). The two fundamental results associated Clark’s 
completion and loop formula is as follows: (see [28]).  

Clark’s completion of : 

cc = {  r  abody+(r) a  bbody-(r) b | r  }   

{ p rbody(p)r | patoms()} 
 

Where r is a new variable introduced for each rule r  .  
 

Example: 

Let  = { a  b, not c.   a  d.  b  not e.   e  not b. }, 
then  

cc = { 1  b, c.  2  d.  3  e. 4  b.}   

  { a  1  2.   b  3.    e  4. } 
 
The Clark’s completion nogood reflect the structure of the 

implications present in the definition of cc. In particular: 

 For the original rule p  body(r), the set of nogood is 

{Fr}  {Ta | a  body+(r)}  {Fb | b  body
-
(r)}. 

 In addition, for each rule, the body should be false if 
any of its element is falsified, leading to the set of 

nogoods of the form: {Tr,  Fa} for each a  body+(r) 

and {Tr, Tb} for each b  body
-
(r). 

 The closure of an atom definition leads to a nogood 

expressing that the atom is true if any of its rule is 

true: {Fp, Tr} for each r  body(p). 

 Similarly, the atom cannot be true if all its rules have 

a false body. This yields the nogood {Tp}  {Fr | r  

body(p)}. 

cc is the set of all the nogoods defined as above.  
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Figure 2, dlv system general architecture 
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The loop formula nogoods derive instead from the need to 

capture loop formulae, thus avoiding positive cycles. Let a 

loop L be a set of atoms and EB(L) be the external support of 

L for . Then, for each atom p  L, the loop nogoods are: 

{Tp}  {Fr | r  EB(L)} We demote with  the set of all 

loop formula nogoods and  the whole set of nogoods:  = 

cc  .  
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