
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1428

Answer Set Survey

Omar EL-Khatib

Computer Science Department

Taif University

Taif, SA

Email: omer.khatib {at} tu.edu.sa

Abstract— Answer set programming (ASP) is a form of

declarative programming that is emerged from logic

programming with negation and reasoning formalism that is

based on the answer set semantics [1]. ASP is suited for solving

hard combinatorial search problems, and has many applications,

such as: bioinformatics [3, 4], configuration [5], database

integration [6], diagnosis [7], hardware design [8], insurance

industry [9], phylogenesis [10, 11], security protocols [12] and

model checking [13], to name some.

ASP has a rich yet simple modeling language with high

performance solving capabilities, ability to reason with

incomplete information, existence of well-developed

mathematical theory and programming. A number of solvers

have been proposed, such as: smodels [14, 15, 22], dlv [16],

cmodels [15], assat [18, 24], and clasp [19]. ASP programs look

like Prolog programs; however, they are treated in a different

computation mechanism. ASP uses model generation instead of
query evaluation as in Prolog. (Abstract)

Keywords-component; answer set programming, answer set

semantics,

I. INTRODUCTION

Answer set programming (ASP) is a form of declarative

programming that is emerged from logic programming with

negation and reasoning formalism that is based on the answer

set semantics [1]. ASP is considered in the late 1990s as a new
programming paradigm [2]. This programming paradigm is

suited for solving hard combinatorial search problems, and has

many applications, such as: bioinformatics [3, 4],

configuration [5], database integration [6], diagnosis [7],

hardware design [8], insurance industry [9], phylogenesis [10,

11], security protocols [12] and model checking [13], to name

some.
ASP has a rich yet simple modeling language with high

performance solving capabilities, ability to reason with
incomplete information, existence of well-developed
mathematical theory and programming. A number of solvers
have been proposed, such as: smodels [14, 15, 22], dlv [16],
cmodels [17], assat [18, 24], and clasp [19]. In ASP, a search
problem is represented by a logic program of which its answer
sets correspond to solutions. An answer set solver is used for
finding answer sets of the problem. ASP programs look like
Prolog programs; however, they are treated in a different
computation mechanism. ASP uses model generation instead of
query evaluation as in Prolog.

II. BACKGROUND

We briefly recall the basics about ASP. Let us consider a

language composed of a set of propositional symbols (atoms)

ᴀ. An ASP-program is a collection of rules of the form:

 H  L1, …, Lm, not Lm+1, …, not Lm+n. 

Where H is an atom, m  0, n  0, and for each 0 ≤ i ≤ m+n, Li
is an atom. The symbol “not” stands for negation-as-failure.

Given a rule r as in (1), we let head(r) denotes {H}, body(r)

denotes the body of the rule r {L1, … Lm, not Lm+1, ... not

Lm+n}, body+ (r) = {L1, …, Lm}, and body-(r) = {Lm+1, …,

Lm+n}. If the head(r) =  then the rule r is called a constraint.

If the body(r) =  then the rule r is called a fact. A program Π
consists of rules of the form (1) is called a normal logic

program. If all rules in a logic program have body-(r) =  then
the logic program is called basic logic program or datalog

program. All atoms in the logic program  is called Atms().

For a basic logic program , a set of atoms X is closed under

 if for any rule r  , head(r)  X whenever body+(r)  X.

The answer set of  is defined as the smallest set of atoms

that is closed under  this is denoted as Cn(). Answer set
can be extended to normal logic programs as in [1]. First, let

us introduce the reduct of a normal logic program  as
follows:

X = {head(r)  body+ (r) | r  , body- (r)  X = }

X is calculated by deleting:

 All rules having a not A in its body with A  X,
then

 All negative atoms of the form not A from the

bodies of the remaining rules.

Clearly, X is a basic logic program, and its answer set is

defined as Cn(X).

Give a logic program  with answer set X. If p  X, then we
say that p is true under answer set X, otherwise p is false

under answer set X. If p  X then there is at least one rule r

, such that: p  head(r) and body+ (r)  X and body-(r) X

= . We say that rule r supports atom p or p is provable by rule

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1429

r in  under answer set X. If {p}  X= then there is no rule

supports p or p is not probable in  under answer set X.

For illustration, consider the following program:

1 = {p  not q.

 q  not p.
 }

There are four answer set candidates for 1: {{p}, {q}, {p, q},

}. To verify which of the four candidates are answer sets, we
use the following table.

X 1 Cn(1
X) X=Cn(1

X)

 {p. q.} {p, q} No

{p} {p.} {p} Yes

{q} {q.} {q} Yes

{p, q}   No

Therefore, we have two answer sets: {p} and {q}.
Another example is the following program:

 2 = {p  not p.}

We have two answer set candidates: { {p}, }. Verifying
which of the two candidates is an answer set:

X Π1 Cn(Π1
X) X=Cn(Π1

X)

 {p.} {p} No

{p}   No

Therefore, we have no answer set for the 2. The rule in 2 is

called integrity constraint and can be written as  p, which
means eliminate any candidate answer set that contains the

atom p.

Consider the following program:

 3 = {p  not q.

 q  not p.

  p. }

There are four answer set candidates {, {p}, {q}, {p, q}}.

The rule  p eliminates all answer set candidates that contain

the atom p. So, we are left with two answer set candidates {,

{q}}. Clearly, program 3 has one answer set {q}.

Let  be a normal logic program and let G() = (Atms(), E)

be the positive atom dependency graph of . If (a, b)  E,

then there is a rule r  , such that a  head(r) and b 

body+(r). A loop in , is the set of atoms L  Atms() such

that it induces a strongly connected subgraph of G(). Recall
that a strongly connected graph is a graph where there is a

path of non-zero length between every two atoms in the graph.

We denote the set of all loops in  by Loop().
The process of eliminating all variables from a logic program
and converting it into propositional logic program is called

grounding. For example, Let 4 = {d(1). d(2). p(X)  d(X)},

then grounding of 4 is: {d(1). d(2). p(1)  d(1). p(2) 

d(2). }. The predicate d(1) and d(2) are called domain

predicate, which are predicates used to find all variable

binding. While Atom p(X) is not a domain predicate.

III. MODELING

To write a program Π in ASP, we divide Π into two sets of

rules: (1) generate rules which generate all possible answer

sets, and (2) integrity constraint rules which eliminate

unwanted answer sets. As an example, consider the n-queen

search problem. The goal is to place an n-queen on an nxn
chessboard, so that no two queens appear on the same row,

column or diagonal.

To define the board length and width, the following fact is

defined:

 board(1..N, 1..N).

Here, NxN facts were defined. Alternatively, to reduce the

number of facts, we can define the board as:

 d(1..N).

Which define both the length of the board and the width of the
board.

The generate set of rules is as follows:

 queenOn(X, Y)  d(X), d(Y), not empty(X, Y).

 empty(X,Y)  d(X), d(Y), not queenOn(X,T).

The two rules above select either to position the queen on

location (X, Y) on the chessboard (represented by the

predicate queenOn(X,Y)) or leave the location (X,Y) empty

(i.e. with no queen on the location (X,Y), represented by the

predicate empty(X,Y)).

The two rules are similar to rules in Π1 where atom p is

replaced by atom queenOn(X,Y) and atom q is replaced by

empty(X,Y).

For a 2x2 chessboard, there will be 16 answer set candidates,

among them are the following:

empty(1,1), empty(1,2), empty(2,1), empty(2,2)

empty(1,1), queenOn(1,2), empty(2,1),

empty(2,2)

 Q

empty(1,1), queenOn(1,2), queenOn(2,1),

empty(2,2)

 Q

Q

queenOn(1,1), queenOn(1,2), queenOn(2,1),

queenOn(2,2)

Q Q

Q Q

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1430

The following integrity constraint eliminates all answer sets

that contain two queens positioned in the same row with

different column locations.

 queenOn(X, Y), d(X), d(Y), queenOn(X, Y1),

d(Y1), Y ≠ Y1.

The following integrity constraint eliminates all answer sets

that contain two queens positioned in the same column with

different row locations.

 queenOn(X,Y), d(X), d(Y),

queenOn(X1, Y), d(X1), X ≠ X1.

The last integrity constraint eliminates all answer sets that two

queens positioned on the diagonal.

 queenOn(X,Y), d(X), d(Y), queenOn(X1, Y1),

d(X1), d(Y1), |X-X1| ≠ |Y-Y1|.

The following integrity constraint is needed to make sure that

every row has a queen placed in some column number.

rowHasQueen(X)  queenOn(X, Y), d(X), d(Y). (2)

 rowHasQueen(X), d(X). (3)

Rule (2) finds all row numbers that have queen in some

column for that row. Integrity constraint (3) eliminates all

answer sets that contains rows that do not have queen in that

row of the chessboard.

IV. ANSWER SET EXTENSIONS

Various extensions to the basic paradigm exists, in the

following subsections many answer set extensions is

presented.

Classical Negation:
In reference [20], another kind of negation is defined which

is classical negation. It is represented as  or. A literal is

either an atom p or a classical negated atom p. A logic
program with literals is called an extended logic program. An

extended logic program is contradictory if both p and p are

derivable. Classical negation can be eliminated by replacing p

with a new atom p' and adding the integrity constraint  p, p'.
Then we have a normal logic program and the answer set is
defined in the same way as defined in normal logic programs.
The difference between negation as failure not p and classical

p is that, in case of negation as failure not p in a logic

program , if p is not supported by any rule in  under answer
set X, then by closed world assumption not p is derivable from

 under answer set X. For example, consider the logic

program 5 = {cross  not car}, the answer set X of 4 is

{cross}. This is because car is not supported in 5. So, cross is

true under answer set X of 5. However, in case of classical

negation p, then p belongs to answer set X, if p is

supported in  under answer set X. For example, consider the

logic program 6 = {cross  car}, then the answer set X is 

since car is not supported in 6 under answer set X.

therefore, atom cross is not supported in 6 under answer set
X. Using classical negation, an atom fails if its negation
succeeds. Using negation as failure, an atom fails if it does not
succeed.

Disjunctive Logic Programs

Disjunctive logic program is a normal logic program where

the head of the rule is a disjunctive of atoms [20]. The rules

are of the form:

h1 | h2 | … | hk  L1, …, Lm, not Lm+1, …, Lm+n.

To define answer set models, first we consider a disjunctive

program  without negation as failure “not”, rules are of the
form:

h1 | h2 | … | hk  L1, …, Lm.

The minimum set of atoms X that is closed under  is an

answer set. Therefore, if for every rule r , if body(r)  X,

then for some 0  i  k, Li  X. Now, consider a program with
disjunctive rules and contains negation as failure “not” in the

body. Let X be a set of atoms, define X to be disjunctive
program by:

 deleting all rules r   where not L  body(r) and

L  X, then

 Delete remaining not L from the rest of the rules'

bodies.

Clearly, X is disjunctive logic program with no negation as
failure “not”. X is an answer set if X is a minimal set that is

closed under X. for example, let 7 = {p | q  }, then 6
has two answer sets {p} and {q}. The set {p, q} is not an

answer set of 7 since it is not a minimal set closed under 7.

Cardinality Atoms:

Another extension is a cardinality atom [34, 35] which is

as follows:

L {L1, …, Lm} U

Where L is a lower bound integer number and U is an upper

bound integer. The semantics of a cardinality atom is that, if

the number of atoms that belong to an answer set X of a logic

program  are between the lower bound L and upper bound U
(inclusive), then the cardinality atom is considered true under

the answer set X. Otherwise, the cardinality atom is

considered false under the answer set X. Rules that have
cardinality atom in the body of a rule are called cardinality

rule. Rules that have cardinality atom in the head of the rule is

called a choice rule (see below).

Weighted Atoms:

Weighted atoms [34, 35] are of the form:

L [L1=a1, …, Lm=am]U

Where L is a lower weight bound integer number, and U is an

upper weight bound integer. Each literal Li where 1  i  m, in
the weighted atom, have integer weights ai. The semantics of a

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1431

weighted atom is that, if the sum of weights of the literals that

are in answer set X is between the lower bound L and the

upper bound U (inclusive), then the weighted atom is

considered true under the answer set X. Otherwise, the

weighted atom is considered false under the answer set X.

Rules that have weighted atom in the body of a rule are called

weighted rule.

Choice Rules:

Choice rules [34, 35] have cardinality atom or weighted

atom in the head of a rule. Choice rule is of two forms:

L { h1, …, hm } U  body+, body-. (4)
Or

L [h1=a1, …, hm=am] U  body+, body- (5)

Where L is a lower bound integer and U is the upper bound

integer, and for each 0  i m, each ai is an integer represents
the weight of the atom hi. The semantic of choice rules is as

follows: for an answer set X, if body+  X and body-  X = ,
then:

 In case of rules of the form (4), an arbitrary

number of atoms between lower bound L and upper

bound U (inclusive) from the atoms {h1, …, hm} is in

the answer set X.

 In case of rules of the form (5), an arbitrary atoms

with sum of their weights is between the lower bound

L and the upper bound U (inclusive) from the atoms {

h1=a1, …, hm=am} is in the answer set.

Conditional Literals:
A conditional literal [34, 35] is of the form:

p(X) : q(X)

Where p(X) is a literal and q (X) is a domain predicate. The

conditional literal is expanded to a conjunction of literals. For

example, consider the following program:

8 = { d(1). d(2).

 h  p(X) : d(X).
 }

Program 8 is expanded as follows:

d(1). d(2).

h  p(1), p(2).

Weak Constraint:

Weak constraints [33] are rules that should be satisfied but
their violation in an answer set X does not reject the answer

set X. The answer sets of a logic program  with a set W of
weak constraints are those answer sets of X which minimize

the number of violated weak constraints. Weak constraints

can be weighted according to their importance (the higher the

weight, the more important the constraint). In the presence of

weights, the answer sets minimize the sum of the weights of

the violated weak constraints. Weak constraints can also be

prioritized. Under prioritization, the semantics minimizes the

violation of the constraints of the highest priority level first;

then the lower priority levels are considered one after the other

in descending order.

Syntactically, weak constraints are specified as follows.

 L1, …, Lm, not Lm+1, …, not Lm+n [Weight:Level]

Where Weight and Level are integers, Li are literals, for 0  i

 m+n.

Ordered Disjunction Rules:

Logic programs with ordered disjunction rules are an

extension to normal logic programs. The new connective 
that represents ordered disjunction allowed to appear in the

head of rules only [31, 32]. The ordered disjunction rule is of

the form:

C1  C2  …  Cn  body
+
, body

-
.

For an answer set X of a logic program . If the rule is in ,

body+  X and body-  X= , then try to include C1 in the
answer set X if possible, otherwise try to include C2 in answer

set X if possible, ... otherwise try to include Cn in answer set

X. For example, Let

9 = {p  q  not r,

 s  not s, p }

Then the answer set of 9 is ${p}$. On the other hand, the
program:

10 = {p  q  not r,

 s  not s, p}
has an answer set of {q}, since we cannot find an answer set
{p} because of the second rule.

Aggregate Functions:

Aggregate functions like sum, count, max, and min, has
been added to answer set [21]. These arithmetic operators

increase the expressiveness of answer set. In [21], A symbolic

set is a pair {Vars: Conj}, where Vars is a list of variables and

Conj is a conjunction of literals (p or p). An aggregate
function is of the form f(S), where S is a symbolic set and f is

arithmetic operator that belongs to {sum, count, max, min}.

An aggregate atom is of the form:

L ∆1 f(S) ∆2 R

Where f(S) is an aggregate function, ∆1, ∆2  {=, , , , },
and L and R are terms (either a constant of a variable) called

guard of an aggregate function. One of “L ∆1” or “∆2 R” can

be omitted.

A (DLPA) rule is of the form:

a1  …  an  b1, …, bk, not bk+1, …, not bm

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1432

Where a1, …, an are atoms and b1, …, bm are atoms or
aggregate atom. A (DLPA) program is a set (DLPA) rules. As
an example, consider the following program with some facts
about a(X, Y) and b(X).

11 = { q(1)  p(2, 2).

 q(2)  p(2, 1).

 t(X)  q(X), #sum{Y: p(X, Y)} > 1.

 }

Ground(11) is:

{ q(1)  p(2, 2).

 q(2)  p(2, 1).

 t(1)  q(1), #sum{Y: p(1, Y)} > 1.

 t(2)  q(2), #sum{Y: p(2, Y)} > 1.

 }

The first two rules of program 11 will generate 4 answer sets
candidates: {{q(1), q(2)}, {q(1), p(2, 1)}, (p(2, 2), q(2)}, {p(2,
2), p(2, 1)}}. From the third rule atom t(1) will not be in any
answer set candidates since sum{Y: p(1, Y)} is always zero not
greater than 1. From the last rule t(2) will be in an answer set
when q(2) is an answer set and sum{Y: p(2, Y)} is greater than

one. Therefore, program 11 has four answer set {{q(1), q(2)},
{q(1), p(2, 1)}, {t(2), p(2, 2), q(2)}, {p(2, 2), p(2, 1)}}.

A rule r is safe if the following conditions hold: (i) each
variable appears in the head of the rule, must also appear in a
positive atom in the body of rule r. (ii) each variable appears in
the symbolic set {Vars: Conjs} must appear in a positive literal
Conjs. (iii) each guard of an aggregate function must be either
a constant or a variable that appear in the head of the rule r.

V. ANSWER SET SYSTEMS

Several answer set computation systems have been developed,
such as: smodels, dlv, assat, cmodels, and clasp. The
computation of answer sets is done in two phases: (i)

grounding of the logic program (): which is eliminating

variables to obtain a propositional program ground(). (ii)
Computation of answer sets on the propositional program

ground().

Logic

program

Grounder

Propositional

logic

program

Answer
set solver

Answer

sets(s)

Figure 1, computation of answer set of a logic programs.

The first phase (grounding) is done using lparse program or
gringo or the grounder in dlv. The program lparse and gringo
both can handle classical negation, disjunction logic programs,
cardinality atoms, weight atoms, choice rules, conditional
literals, and aggregates. The grounder of dlv handles classical
negation, disjunction logic programs, weak constraint, and

aggregates. We will consider the second phase which is the
generation of answer set of a propositional logic program. The
normal logic programs are considered only for simplicity.
Therefore, all atoms in the answer set must appear in the head
of some rule in the logic program. For a normal logic program

, a partial model  is a 3-valued model with true atoms,
false atoms and undefined atoms. So,

= <T, F, U>

Where T is the true atoms, F is the false atoms, and U is the
undefined atoms. A total model is a partial model where all

atoms Atms() is either true or false and the undefined atoms

is empty, i.e. = <T, F, > where TF = Atms(). The
algorithm is as follows: we start with all atoms appears in the

logic program as undefined atoms U. Therefore,  = <, ,
Atms>. Then we use propagation techniques to extend the
partial order to increase the number of true and false atoms. If

the extended partial model is a total model (i.e. U=) then it is
an answer set. If the extended partial model contains an atom

that is true and false at the same time (i.e. T  F = ), then a
contradictory partial model occur and no answer set situation
occurred. Otherwise, an atom is selected non-deterministically
from the undefined atoms U and branch on its true or false
truth value. This is done recursively by adding the selected
atom to the partial model as true atom once and again as false
atom. There are many ASP heuristics to select the atom from
the set U to branch on. The ASP heuristics tries to minimize
the depth of the search tree in finding the answer sets. Please,
see the [23] for more information about ASP heuristics.

The smodels systems: The smodels [14] algorithms is as
follows:

Smodels(T, F, U)

1. Expand(T, F, U)

2. If T  F   then return fail.

3. If U= then T is an answer set, print T

4. A = select(U)

5. Smodels(T  {A}, F, U \ {A});

6. Smodels(T, F  {A}, U \ {A});

The smodels function takes the partial model which is the three
sets: the true atoms T, false atoms F and the undefined atoms
U. Then it calls the Expand function in step (1), which uses the
propagation techniques to increase the number of true atoms
and false atoms. In step 2, the function checks that if the partial
model is contradictory, it return fail. In step 3, the function
checks if the partial model is a total model, then it prints that
model as answer set. In step 4, the function selects an atom A
from the undefined atom. In step 5, it calls itself recursively to

try to find answer set T  {A}. In step 6, the function smodels

calls itself recursively to try to find answer set with F  {A}.

Initially, smodels is called with T=, F= and U=Atms.

The dlv system: The dlv system is a deductive database
system, based on disjunctive logic programming, which offers
front-ends to several advanced KR formalisms. The system can
handle weak constraints, aggregates functions, functions, lists
and sets. You can call dlv from java programs and you can call

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1433

c++ functions from dlv. An outline of the general architecture
of the dlv system is shown in Figure 2. The input logic

program () is fed into the instantiator, which eliminates the
variables and generates the propositional logic program

ground(). This process is called instantiator or grounding.
Then the model generator generates an answer set candidate
which is verified by the model checker whether it is an answer
set. The algorithm for Model generator is as follows:

ModelGenerator (T, F, U):

1. <T, F, U>= Propagate(T, F, U);

2. If (T  F = ) then fail.

3. If (U=) then print answer set T.
4. L = select(U)

5. ModelGenerator(T  {L}, F, U \ {L});

6. ModelGenerator(T, F  {L}, U \ {L});

The algorithm of Model generator is similar to the smodels

function.

The assat and cmodels systems: Both answer set solver assat

and cmodels converting the answer set logic program into

propositional satisfiability (SAT) program. This reduces the

problem of computing answer sets to SAT problem (using

Clark’s completion [25]), then invoke any of the SAT solver to
generate the answer sets. To handle the normal logic programs,

a loop formula is added [18, 24]. However, whenever a logic

program is mapped to equivalent propositional formulas, the

size might grow exponentially [26]. The formal definition of

loop formula is as follows. Let  be a normal logic program,

assume a set of atoms L  Atms(), we define an external

support of L for  as: ES(L) = {r   | head(r)  L, body(r)

 L=}. Then the loop formula of a loop L for  is:

LF(L)={ALArES(L)(Abody+(r) A  Abody-(r) A)

For example: Let

 = {a  b, not c.

 b  a, not d.

 a  e.
 }

Then the loop L of  is {a, b}, then the external support for L

is: ES(L) = {a  e}. The loop formula LF(L) is:

{a, b  e}.

The Postdam system: The postdam answer set solving

collection is a combination of grounder called gringo and an

answer set solver called clasp [27, 28]. The primary clasp

algorithm has been developed for answer set solving based on

conflict-driven nogood learning [30]. Assignments and

nogoods are set of assigned atoms, i.e. entities of the form Tp

or Fp denoting that atom p has been assigned true or false,

respectively. Given an assignment A, we denote AT = {p | Tp

 A} and AF = {p | Fp  A}. The assignments A is a total

assignment if it assign a truth value to all atoms in Atms(),
otherwise it is a partial assignment. Given an assignment A

and a nogood , we say that  is violated if   A. In turn, a

partial assignment A is a solution for a set of nogoods  if no

   is violated by A.
The concept of nogood can be also used during

deterministic propagation phases (a.k.a. unit propagation) to

determine additional assignments. Given a nogood  and a

partial assignment A such that \A = {Fp} (\A = {Tp}), then
we can infer the need to add Tp (Fp) to A in order to avoid

violation of . In the context of ASP computation, we
distinguish two types of nogoods: Clark’s completion nogoods

[25, 30], which are derived from Clark’s completion of a logic

program (denoted with cc the set of Clark’s completion

nogoods for the program ), and loop formula nogoods [25],

which are derived from the loop formula of  (denoted by

). The two fundamental results associated Clark’s
completion and loop formula is as follows: (see [28]).

Clark’s completion of :

cc = { r  abody+(r) a  bbody-(r) b | r  } 

{ p rbody(p)r | patoms()}

Where r is a new variable introduced for each rule r  .

Example:

Let  = { a  b, not c. a  d. b  not e. e  not b. },
then

cc = { 1  b, c. 2  d. 3  e. 4  b.} 

 { a  1  2. b  3. e  4. }

The Clark’s completion nogood reflect the structure of the

implications present in the definition of cc. In particular:

 For the original rule p  body(r), the set of nogood is

{Fr}  {Ta | a  body+(r)}  {Fb | b  body
-
(r)}.

 In addition, for each rule, the body should be false if
any of its element is falsified, leading to the set of

nogoods of the form: {Tr, Fa} for each a  body+(r)

and {Tr, Tb} for each b  body
-
(r).

 The closure of an atom definition leads to a nogood

expressing that the atom is true if any of its rule is

true: {Fp, Tr} for each r  body(p).

 Similarly, the atom cannot be true if all its rules have

a false body. This yields the nogood {Tp}  {Fr | r 

body(p)}.

cc is the set of all the nogoods defined as above.

Input

program

Instantiator Model

generator

Answer

sets

Model

checke

r

Figure 2, dlv system general architecture

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1434

The loop formula nogoods derive instead from the need to

capture loop formulae, thus avoiding positive cycles. Let a

loop L be a set of atoms and EB(L) be the external support of

L for . Then, for each atom p  L, the loop nogoods are:

{Tp}  {Fr | r  EB(L)} We demote with  the set of all

loop formula nogoods and  the whole set of nogoods:  =

cc  .

REFERENCES

[1] M. Gelfond and V. Lifschitz, “the Stable Model Semantics for Logic

Programming,” ICLP/SLP, pp. 1070-1080, 1988.

[2] V. Marek and M. Truszczyński, “Stable models and an alternative logic
programming paradigm,” In Apt, Krzysztof R. The Logic programming

paradigm: a 25-year perspective, pp. 169-181, Springer. 1991.

[3] N. Tran and C. Baral, C, “Reasoning about triggered actions in
AnsProlog and its application to molecular interactions in cells,” In

Dubois, D., Welty, C., Williams, M., eds.: Proceedings of the Ninth
International Conference on Principles of Knowledge Representation

and Reasoning (KR’04), pp. 554–564, AAAI Press 2004

[4] S. Dworschak, S. Grell, V. Nikiforova, T. Schaub and J. Selbig,
“Modeling biological networks by action languages via answer set

programming,” Constraints 13 (1-2), pp. 21–65, 2008

[5] T. Soininen and I. Niemela, “Developing a declarative rule language for

applications in product configuration, “ In Gupta, G., ed.: Proceedings of
the First International Workshop on Practical Aspects of Declarative

Languages (PADL’99), pp. 305–319, Springer 1999.

[6] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter, W. Faber,
M. Fink, G. Gottlob, R. Rosati, D. Lembo and M. Lenzerini, M. Ruzzi,

E. Kalka, B. Nowicki. and W. Staniszkis, “The INFOMIX system for
advanced integration of incomplete and inconsistent data,” In Ozcan, F.,

ed.: Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’05), ACM Press (2005), pp. 915–917.

[7] T. Eiter, W. Faber, N. Leone, and G. Pfeifer, “The diagnosis frontend of

the dlv system,” AI Communications 12 (1-2), 99-111, 1999.

[8] E. Erdem, E. and M. Wong, “Rectilinear Steiner tree construction using
answer set programming,” In: Proc. of ICLP, 386–399, 2004.

[9] C. Beierle, O. Dusso and G. Kern-Isberner, “Using answer set

programming for a decision support system,” In Baral, C., Greco, G.,
Leone, N., Terracina, G., eds.: Proceedings of the Eighth International

Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’05), Springer (2005), pp.374–378.

[10] J. Kavanagh, d. Mitchell, E. Ternovska, J. Manuch, X. Zhao and A.

Gupta, “Constructing Camin-Sokal phylogenies via answer set
programming,” In Hermann, M., Voronkov, A., eds.: Proceedings of the

Thirteenth International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’06), Springer (2006), pp.

452–466.

[11] D. Brooks, E. Erdem, and S. Erdogan, J. Minett and D. Ringe,

“Constructing Camin-Sokal phylogenies via answer set programming,”

Inferring phylogenetic trees using answer set programming. Journal of
Automated Reasoning 39 (4), pp. 471–511, 2007.

[12] L. Aiello and F. Massacci, “Verifying security protocols as planning in

logic programming,” ACM Transactions on Computational Logic 2 (4),
pp. 542–580, 2001.

[13] K. Heljanko and I. Niemela, “Bounded LTL model checking with stable

models,“ Theory and Practice of Logic Programming 3 (4-5), pp. 519–
550, 2003.

[14] P. Simons. “Efficient implementation of the stable model semantics for

normal logic programs,” Research Report 35, Helsinki University of
Technology, September 1995.

[15] I. Niemelä and P. Simons. “Efficient implementation of the well-

founded and stable model semantics,” Proceedings of the 1996 Joint
International Conference and Symposium on Logic Programming, pages

289-303, Bonn, Germany, September 1996.

[16] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F.
Scarcello. “The DLV system for knowledge representation and

reasoning,” ACM Transactions on Computational Logic, 7(3):499–562,
July 2006.

[17] Yu. Lierler and M. Maratea, “Cmodels-2: SAT-based answer set solver

enhanced to non-tight programs,” In Proc. of LPNMR-7, 2004.

[18] F. Lin and Yu. Zhao, ASSAT: “Computing answer sets of a logic
program by SAT solvers,” In Proc. of AAAI-02 .

[19] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub, “clasp: A

Conflict-Driven Answer Set Solver,” LPNMR'07, 2007

[20] M. Gelfond and V. Lifschitz. “Classical negation in logic programs and

disjunctive databases,” New Generation Computing , 9(3/4):365–386,
1991.

[21] T. Dell Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. “Aggregate

functions in disjunctive logic programming: semantics, complexity, and
implementation in DLV,” In Proceedings of the 18th International Joint

Conference on Arti- ficial Intelligence (IJCAI) 2003, pp. 847 852,
Acapulco, Mexico, August 2003. Morgan Kaufmann Publishers.

[22] I. Niemelä and P. Simons. Smodels - an implementation of the stable

model and well-founded semantics for normal logic programs. In
Proceedings of the 4th International Conference on Logic Programming

and Nonmonotonic Reasoning, volume 1265 of Lecture Notes in
Artificial Intelligence, pages 420-429, Dagstuhl, Germany, July 1997.

[23] W. Faber, N. Leone, and G. Pfeifer. “Experimenting with heuristics for

answer set programming,” In B. Nebel, editor, Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 635–640.

Morgan Kaufmann, 2001.

[24] F. Lin and Y. Zhao. “Assat: Computing answer sets of a logic program
by sat solvers,” Artificial Intelligence, 157:115–137, 2004.

[25] K. Clark. “Negation as failure,” In H. Gallaire and J. Minker, editors,

Logic and Data Bases, pp. 293–322. Plenum Press, 1978.

[26] V. Lifschitz and A. Razborov. Why are there so many loop formulas?

ACM Transactions on Computational Logic, pp 261-268, 2006.

[27] M. Gebser, B. Kaufmann, and T. Schaub. “Conflict-driven Answer Set
Solving: From Theory to Practice,” Artificial Intelligence 187: 52–89,

2012.

[28] M. Gebser et al. “Answer Set Solving in Practice,” Morgan & Claypool,
2012.

[29] F. Fages. “Consistency of Clark’s Completion and Existence of Stable

Models,” Journal of Methods of Logic in Computer Science, 1(1):51–60,
1994.

[30] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[31] G. Brewka , I. Niemelä , T.Syrjänen. “Logic programs with ordered

disjunction,” Computational Intelligence, 20(2): 335-357, May 2004.

[32] G. Brewka. “Logic Programming with Ordered Disjunction,” In

Proceedings of AAAI, pp. 100—105, 2002.

[33] DLV user manual:
http://www.dlvsystem.com/html/DLV_User_Manual.html

[34] I. Niemela and P. Simons. "Extending the Smodels system with

cardinality and weight constraints," In Minker, J., ed.,Logic-Based
Artificial Intelligence. Kluwer Academic Publishers. 2000

[35] C. Baral. “Knowledge Representation, Reasoning and Declarative

Problem Solving,” Cambridge University Press, 2003.

[36] F. Vella, A. Dal Palu, A. Dovier, A. Formisano, E. Pontelli.
“CUD@ASP: Experimenting with GPUs in ASP solving," CILC,

volume 1068 of CEUR Workshop Proceedings, page 163-177. CEUR-
WS.org, (2013).

http://www.dlvsystem.com/html/DLV_User_Manual.html

