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Abstract— Model-Driven Engineering involves incremental 

development of code through the collaboration and 

transformation of models by automated tools. The aimed 

automation makes the semantic aspect of modeling, a significant 

implementation concern since in a way it requires the machines 

to understand what they are doing. In this paper we introduce an 

approach in which, models are accompanied by scripts that 

provide them with descriptions of their semantic context that 

participate in their usage as a model. Our approach focuses on 

inter-model relations and also uses some concepts from Peircian 
semiotics. 
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I.  INTRODUCTION  

Model Driven Software development (MDSD) is an 
innovative paradigm in which models, instead of code takes the 
leading role in the software development process. In a typical 
MDSD project, there will inevitably be lots of models in 
complicated relations with each other. Most probably there will 
be many models that refer to each other or each other’s 
elements. In the software development process it is common 
that one element of a system is defined in one diagram and 
referred in another. Classes for example are defined in CRC 
cards and UML class diagrams and are referred in many parts 
of the project such as the collaboration diagrams. 

In a complicated development environment it is not easy 
for the machine-mind to determine what each model means and 
how it can contribute to answering the informational 
requirements of the project. As the projects grow and the 
requirements increase, models also get more and more 
complicated. Dividing the models into interrelated modules can 
be a good solution for dealing with complexity. In that case the 
structural and semantic inter-model relations get even more 
entangled. The main aim of this work is to propose a method 
for making the meaning and functionality of each model clear 
by constituting strong ties between the models and the other 
models, and also the systems that they model. 

It should be noted that in this work the unification principle 
“Everything is a model.” as stated by Bezivin [1] is promoted 
as a starting point for analyzing different kinds of model 
interaction, instead of keeping the study restricted to UML 
class diagrams. We also use the term context in a broad sense 

such that it not only refers to the interpretation environment of 
the model developer, but also to that of the model user. 
Therefore in this work context awareness also implies 
semantically integrated, dynamic behavior of models as they 
respond to queries. 

Most of this work is composed of a relational language’s 
initial specification that makes use of Favre’s Megamodel [2]. 
Formal syntactic definition of the language is not given but the 
changes made on the original approach are explained in detail, 
leaving little space if any for ambiguity. We should also note 
that the defined language is not an alternative for the existing 
Megamodel, since the purposes of the two approaches are 
completely different. Nevertheless by using existing 
terminology, a set of complicated definitions could be made 
tidier and easier to be expressed. 

In the second section there is a discussion regarding how 
models receive their meaning. In the third section a new inter-
model relational language will be described, based on the 
existing Megamodel concept. In the forth section there is a 
projection on how inter-model relations can be used by 
automated tools for answering queries. Fifth section contains 
the conclusions. 

II. THE MEANING OF A MODEL 

In MDSD where models should deliver working systems, 
determining the meaning of a model is not just a philosophical 
challenge but much more than that, it is a crucial design issue. 
In model driven software engineering, models should 
eventually end up in code or some part or aspect of code. The 
meaning of a model lies in what it does for you in the 
development process to reach the final product. In this respect 
models get close to traditional code in the sense that they both 
have perceivable input and output, and also perceivable 
functionality.  

People are culturally inclined to think in terms of dualities 
and naturally assume a syntax-semantics duality which implies 
that language utterances have one unique meaning, just as they 
have one unique form. The everyday conversation often 
neglects to underline the accepted status of the model concept 
as a relation (or role) giving the impression that meaning was 
an intrinsic quality of models that had to be discovered. This 
leads to a confusing discussion about what semantics is and 
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what it is not [3].  On the other hand it is misleading to think of 
meaning as an absolute monolithic entity that is related to 
language semantics. If that were the case, machine translation 
of Shakespeare into Japanese would be very easy. Instead, the 
meaning of a complex linguistic structure is usually acquired 
through a multi-phase symbol grounding process that generates 
a series of interpretations of decreasing abstraction degrees. In 
the interpretation process it is not only the language definition 
that takes control but the context in which the interpretation 
occurs and the intentions of the interpreter (person or machine) 
are also important. In literature this scheme creates concepts 
like subtext and subjectivity. In programming languages there is 
the concept of binding and binding times. Evidently a model 
potentially has more than one meaning. 

A model without any contextual information is like a map 
without a legend, a scale, a north arrow, a title or a “you are 
here” mark. Note that these things are semantic anchors that 
link the map to the real world in various ways and in their 
absence; it would be very difficult to make an effective use of 
any map. Unfortunately this is the case for many object-
oriented models that are created during various phases of 
software development processes. In [4] Daniels suggested that 
an “indication of purpose” was necessary for models. We have 
mentioned in [5] the problem as the orientation problem. Our 
theory is that if a sketch is drawn for some system with the aim 
of using it as a model, (especially for formal usage that 
involves a machine’s interpretation) we have to state what 
exactly has been drawn on paper and how exactly it has been 
represented (with which perspective,  simplifications and 
stylization etc.). 

There are two areas that need to be clarified for each model. 
One area is the language and context in which the syntactical 
model elements are to be interpreted and the other is the 
modeling services provided to the users of the model. Through 
this language the model may provide modeling services such as 
referencing, creation or modification of the original system or 
parts of it. 

Fig. 1 shows a hypothetical model representation as a layer 
between the language that it uses and the language that it 
creates. The linguistic references label in the figure represents 
all the meta-information accessible by the model in order to 
build the correct expression. This includes its meta-model 
(dealing with syntactical issues) and also the contextual layers 
that the model refers to. The domain references label marks the 
entities that the model talks about. The modeling interfaces are 
implicitly or explicitly defined transformation rules that 
instruct the modeling environment about how the queries (and 
which ones) should be answered by using the information 
stored in the model. 

Some of the modeling services provided by the model can 
be defined explicitly by a rule written by the modeler. A rule 
may define for example how to use a class diagram as a 
definition for the classes that it contains. The other services can 
be deduced from the relations of the model with other models. 

For example if two models are known to have symmetry 
between them, this means that certain attributes of one model 
can also be read from the other model.  

 

 

 

Figure 1.  Linguistic relations of a model 

 

Fig. 2 is a representation of a modeling interface. It is 
defined as a transformation between a query and the result that 
it produces. The script (or rule) in the interface guides the 
transformation by referring to the model. Queries may come 
from the user or from the environment itself as a part of a 
bigger transformation task. Each new interface of a model is a 
straightforward definition of a new type of use for that model. 

III. RELATIONS BETWEEN MODELS 

A key aspect of formalization for models is to codify inter-
model relations in a precise and effective way. Favre’s 
Megamodel [2][6] is a significant concept of MDE that deals 
with inter-model relations.. The relations of this language are 
given below with their short definitions [2]. 

Figure 2.  Model interface performs a transformation 

The interesting aspect of the Megamodel is that it addresses a 

strategic field of MDE that had been neglected for a long time; 

that is expressing and comprehending the evolutionary 
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situations in a model driven development process. The 

Megamodel defines a small but adequate relational language 

for this task. It is composed of relations whose labels are 

usually abbreviated as Greek letters 

δ (DecomposedIn) : Whole-part relation. 

μ (RepresentationOf) : The relation between a model and 
the thing it models.   

ε (ElementOf) : The relation between a set and its element 
(Set concept includes languages too.) 

χ (ConformsTo) : The relation between a model and its 
meta-model. (Also that between a grammar and its instance) 

τ (IsTransformedIn) : The relation between the input and 
output of a transformation. (No constraint) 

This language should be extended in order to form a more 
elaborated language that is able to describe inter-model 
relations with higher precision and detail. For this purpose we 
propose to use: 

 Some new relations 

 Parameters for the existing relations 

 More concrete definitions 

The whole-part relation δ can be generalized into a family 
of relations called as the structural relations. These relations 
are about the structure of a system or the syntax of a model. 
The relation is present between a record and its fields, as well 
as an array and its elements. It forms a hierarchy tree that starts 
with the biggest piece at the root and ends up with the smallest 
ones at the leaves. Any given hierarchy tree is probably one of 
the many possible structural views of the system. Different 
schemes of parsing the system may result in different structural 
views. So our δ relation should be able to express the following 
through its attributes: 

 The name of the part or subsystem 

 If the system is a list or array, the element number 

 The view in which the relation holds (a name for the 
method of parsing) 

 Moving upwards in the tree towards the root. 

The first two are related with the identification of the part 
within the whole, and the third piece of information indicates 
the specific perspective of the system (or type name may be 
indicated for a polymorphic object) under which the part exists. 
By meeting the forth requirement it is possible to promote the 
relation into being a complete language for tree browsing. 
Simple directory path expression-like syntax is adopted for 
addressing the nodes of the tree. 

The Fig. 3 demonstrates the extended δ relation by 
instantiating it between a basic student record (the node on the 
left) and its field stdNo (denoted by the node on the right, 
meaning student number). Although a basic record is very 
unlikely to have other views, the example also indicates the 

corresponding type of the data structure (student) according to 
which the part (stdNo) is refered. The part’s name (for this case 
the field’s name) is written as superscript and the view’s name 
is written as subscript. The relation underneath is in the  

 

Figure 3.   Structural relations 

opposite direction and it indicates a structural relation from the 
pieces towards the whole. The superscript starts with double 
periods, which indicates moving upwards. The label student is 
written next to it, meaning that the target of the relation is the 
closest container system, which is of type student. Without any 
type name, double period just means immediate container. 

The signification relation Σ (capital sigma) which originates 
from the semiotics science [7][8] is one of the relations that 
should to be added to the Megamodel’s set of relations. The 
sigma family of relations is composed of the most basic 
signification relation called the indexical signification [8] and 
the most general understanding of signification which is called 
the symbolic signification [8]. 

Semiotics is simply about meaning of things. In the science 
of semiotics any meaningful linguistic entity is called a sign 
and it is simply visualized as a pointer that points at a real-
world or a conceptual object. The science of semiotics deals 
with the mechanisms of various instances of pointing at (called 
semiosis) that can take place directly or indirectly through 
some medium and being interpreted by an intelligent mind. 

Indexical signification is a bipartite relation that simply 
indicates that the source points at the target. The signification 
takes place immediately by using a physical tie, without any 
need for symbolic interpretation. It is simply a pointer. 
Indexical signification is shown with a sigma, subscripted with 
an “i” (Σi) . Symbolic signification on the other hand is a triadic 
relation. It is based on the semiotic triangle of Perician 
semiotics [9] but with a little modification [10]. The element at 
the top corner of the triangle called interpretant (or concept) 
has been replaced by an interpreter for some theoretical and 
practical reasons [10] related to implementation on computers. 

Symbolic signs as defined in semiotics [8] are those that 
point at their object through an interpretation operation that is 
based on conventions or norms. This physically means that the 
relation between the sign and the object is random. 
Randomness is implemented by introducing a third parameter 
called the interpreter which constitutes the pragmatic relation 
between the sign and the object. Interpreter provides a 
transformation on the sign, yielding an indexical reference to 
the object (which does not require further interpretation). In 
some cases the interpreter can also represent the context in 
which the sign functions. For instance in the programming 
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language C, an integer value can stand for a character or a 
Boolean value as well as a numerical value. Similarly a class 
name in UML may refer to an entity in the design model, as 
well as another one in the conceptual model. In some 
languages such ambiguities are prevented by implicitly stating 
the required interpretation. 

Signification is a triadic relation. The interpreter name is 
shown as a third participant of a triadic relation as in the Fig. 4.  
Alternatively it could be written as a subscript to the letter Σ.  

Peircian semiotics [9][8] mentions a third kind of 
signification called iconic signification. In [10] it is argued that 
iconic signification which relies on similarity can be handled as 
a special case of symbolic signification, therefore it does not 
require a special representation. 

Examples of the sigma relation are all around us, since it 
represents the denotation of concepts, real world objects and 
computational objects in a similar fashion. The relation 
between the value in the name field of a student record, and the 
real student in the real world is signification. Likewise an 
identifier signifies a value for a compiler (or interpreter) and a 
query signifies a result set for a relational database. 
Signification (semiosis) takes place everywhere that there is 
language. 

The next relation that should be considered is μ. In the 
Megamodel this relation is named as RepresentationOf and it is 
defined as the relation between a model and its system under 
study (SUS). On the other hand as the unification principle 
(Everything is a model.) [1] suggests, the original definition of 
the modeling relation that is generally accepted does not 
impose any restrictions on the specific shape of a model. In fact 
a model is defined as being any system that can provide 
information about another system [11]. This definition is so 
broad that any two systems that are somehow related can 
potentially considered to be models of each other. For instance 
the presence of a χ relation indicates that there is some 
structural information on the other side. A Σ relation shows that 
the address of the system is known and δ means that the other 
system is already a part of the original system so in all these 
cases there is some information shared. 

Modeling concept is too general to be the definition of a 
relation in a scripting language as μ relation is expected to 
function. A well-defined relation should be making statements 
about its source and target. On the other hand it is true that the 
common understanding of modeling involves that the model 
resembles the SUS somehow. Therefore one relation that would 
worth representing is the symmetry between two systems. 

Being a mathematical concept, symmetry has a concrete 
definition. Two mathematical objects are said to be symmetric 
to each other if one can be obtained from the other through a 
sequence of operations that do not change some invariants. In 
this case the symmetry is said to be taking place with respect to 
those operations. It is hard to define a general methodology to 
detect symmetry between two complex systems. However with 
the help of the signification relation Σ, it is possible to 
formulate a necessarily general definition. 

Symmetry may take different forms based on the nature of 
invariant that is preserved between the systems. It can be some 
structural symmetry (similarity) or a purely abstract symmetry. 
The preservation of an invariant between the systems can be 
visualized as two systems pointing at the same value on a 
certain domain. This way it is possible to formalize the 
similarity type in terms of signification relations and express 
them as semiotical patterns [10]. 

 

 

 

 

Figure 4.  Symbolic signification triad 

As depicted in Fig. 5, there is structural symmetry between 
an object and a model if their interpretation in the same 
language (more precisely by the same interpreter I) yields the 
same value. The common interpreter is written as a subscript 
for the μ relation and the relation is named μI. Structural 
symmetry takes place when for example a complex 
arithmetical expression is simplified (without changing the 
value) or a software system is re-factored without changing its 
functionality. There is no language change here. 

There is also a loose kind of symmetry that we call 
semantic symmetry. It simply means that two systems have the 
same meaning although they are written in different languages. 
The acquisition of the model from the system in this case 
corresponds to a translation. 

Fig. 6 shows the representation of semantic symmetry in 
terms of signification relations. Because the model and the 
object are represented in different languages, there is a 
different interpreter for each. When the relation is meant to 
define a transformation between the object and the model, it 
corresponds to a translation. Translation is probably the most 
well known transformation in the MDE literature since it 
provides moving from one technological space to the other. 
Transformation from the UML class diagram into a database 
model is a common example. Straightforward examples for this 
phenomenon are translation of basic sentences between natural 
languages and translation of code between programming 
languages. 

 

Figure 5.  Structural symmetry relation as a semiotic pattern 
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Figure 6.  Semantic symmetry relation as a semiotic pattern 

Because there are two languages involved, semantic 
symmetry is not physically symmetrical. In order to indicate 
which interpreter applies to which system, both are indicated in 
the subscript. So the relation is named as μI1/I2 when written 
from the object to the model and as μI2/I1 when written from the 
model to the object. 

Another relation that we propose as a new language 
element for a better expression of inter-model relations is 
called as Views and represented with a σ (lower case sigma). 
This relation holds between two systems when the elements of 
one provide indexed access to the elements of the other. This  
creates a new view of the original system. In contrast with a μ 
type of model that provides an encoded copy, a σ model 
provides access to the original (thus up to date) information but 
through its own format and perspective. σ relation can be 
visualized as the relation between the Σ interpreter of a 
language and the domain of that language. The interpreter 
interprets the signs and returns indexical signs (true pointers) 
that point at the values in a domain. At this point if we interpret 
the domain as a referable object, the interpreter becomes its 
model of type σ. 

The Fig. 7 shows this condition that takes place in a 
signification relation. The interpreter translates the signs into a 
pointer that points at the small rectangle labeled as V (Value). 
By doing this, the interpreter is also providing an index to the 
elements of Domain. Between V and Domain there is δ relation 
(implicitly shown) and as a result between the Domain and the 
In our approach the letter χ continues to denote the 
ConformsTo relation. We tend to see it as a ground element 
(not a derived relation) for the basic practical reason that it can 
be implemented directly. In fact it constitutes one of the two 
main methods for implementing sets (The other method is to 
explicitly list the elements.) and χ is also used more often than 
ε (ElementOf). Grammars are structural models with clear-cut 
interfaces. They are used for reading, writing (creating) and 
checking (similar to reading) systems of a certain structure. 
Some grammars can not be used for creation because they 
provide a descriptive model of the system (in contrast with a 
generative model) that does not give a complete picture of the 
structure. This is an important aspect for the ConformsTo 
relation so we propose that it should be indicated on a  

Figure 7.  Semiotic pattern for σ 

superscript of χ as a minus sign for descriptive models and as a 
plus sign for generative (complete) models. 

The Fig. 8 describes a reading operation on which it is 
possible to see χ and σ relations in context. The system to be 
modeled is being read by using a descriptive meta-model 
which it conforms to. The reading operation is marked with the 
letter τ as it is a transformation. The operation creates a new 
model which is a view of the system. The relation between the 
view and the system is labeled as σ with a subscript M (the 
meta-model’s identifier) and a superscript minus (indication of 
an incomplete view). 

As it can be noticed from the Fig. 8, the τ relation is triadic 
by nature as it requires a meta-model as well as the system (to 
be transformed) as input. A meta-model functions as a 
grammar for reading and creation operations, however for 
more complex transformations a full transformation script 
should be provided. 

The last Megamodel relation given by Favre [2] is the 
ElementOf: ε relation does not need modification, thanks to its 
mathematical root, providing reliable semantics and adequate 
abstractness. On the other hand it also does not seem to be a 
popular linguistic element that is expected to be used 
frequently. The minimalism and completeness of the 
Megamodel relation set are beyond the scope of this work, 
however the challenge of building the perfect canonical set of 
inter-model relations (the perfect Megamodel) should be noted 
as an important concern for future work. 

Figure 8.   Reading the system with a meta-model 
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IV. DERIVED MODELING RELATIONS 

The central theme of formalization of inter-model relations 
is that if they constitute a rich and precise language, they can 
be used in order to create models dynamically, as the need 
arises. This can be achieved by making knowledge available to 
the machines by making sure that all the models in a project are 
semantically connected. This way every model has a relative 
semantic address with respect to any other model and 
functionally the whole project can become one big model. For 
semantic completeness the projects should also contain 
references to the real world or some form of ontological 
domain on a common network. 

The example in Fig. 9 contains a student (in the real world) 
whose name is Bob, and a computer record object that models 
it. The modeling relation between a real world object and a 
computer object (which is in fact a record) is always an 
incomplete semantic symmetry. This is shown as μ- in the 
figure and the case that it is only semantic symmetry is not 
explicitly indicated but it is obvious. There is a translation from 
the real world to a data model. + Σ part of the expression 
indicates that the model not only is symmetrical to Bob but it 
also points at Bob. This is because the record contains a Name 
field with which real world people can be referred. This makes 
the record a logical statement (like Bob’s age is 15 and so on). 
The Student object ConformsTo the Student class and this 
relation is complete (marked as +). Between the Student class 
and Bob there is a derived relation. This is also some kind of 
indirect modeling because by looking at the class it is possible 
to tell things about Bob (like that he is a student). This relation 
between Bob and the class can be written as a combination of 
the other two relations as: χ+ o (μ- + Σ).The letter “o” stands 
for function composition operator. 

Suppose that a university information system is being 
developed in Java, in a model driven development 
environment, and at some point in the process, the developer 
asks the tool to create a code frame for a class called Advisor. 
The first thing the tool should do is to check if a complete 
model of the Java class Advisor exists or not. This may be in 
the form of a detailed class diagram, a piece of pseudocode or a 
CRC card. If the environment has access to a suitable 
transformation script from the modeling medium to Java, that 
script can be called with the instruction to create the Java class. 

 

Figure 9.  Modeling a real world object 

It is also probable that a model does not exist for the Java 
class Advisor. In that case the tool checks all the models for 
any rule that promises to provide a symmetric model of 
Advisor (one with that conforms to x where μ (Advisor,x) ). It is 
very likely that a general class diagram would answer this call. 
The main purpose of such a class diagram is not to define the 
individual classes that it contains. It usually serves as a 
structural model of the system as a whole and focuses on the 
relations between the classes. However by looking at a class 
diagram it is possible to perceive some of the class definition 
and a code frame can be written. 

If a class diagram is allowed to manufacture special models 
for the classes that it contains, then this should be formally 
stated as a modeling interface that defines how an incomplete 
definition of a class can be derived from the general diagram. 
This can be done by writing a transformation script. For this 
case where all the needed information is already there, the 
transformation performs a reading operation and forms a view 
of the required definition. 

 σ o μ
 –
 (Advisor):- σ

+
 o δ

Advisor
 (CD) (1) 

The script (1) is an interface rule example for a model. It 
gives a representation of the rule that could instruct a tool that 
such modeling is possible. The first line is the left hand side of 
the rule and it specifies what kind of service is available. Here 
it states that an incomplete reference to a symmetric model of 
Advisor can be simulated. The right hand side of the rule 
(second line) describes how to achieve this. The script tells the 
tool to start with CD (class diagram’s name) then take the part 
called Advisor (the delta relation) and then produce a full 
reference to the available information. This rule of course is 
just for the purpose of demonstration of the interface 
phenomenon and typically more general rules are needed 
without mentioning any class names directly. 

V. CONCLUSIONS 

In this work, an approach that aims achieving semantic and 
functional integrity in a model driven software development 
environment has been introduced. In this approach, a 
declarative language is formed by extending Favre’s 
Megamodel [2] and introducing two new relations: 
signification and viewing. This language can be used in order 
to specify semantic positions for models relationally, with 
respect to each other and the real world concepts. The addition 
of semiotic relations and concepts like symmetry to the 
paradigm provides a better understanding of the inter-model 
relations. This extended language with its increased expressive 
power enables the composition of complex inter-model 
relations by using the elements of a finite Megamodel. For 
future work we aim the implementation of this scripting 
language and the required inference mechanism and make them 
parts of an integrated modeling and transformation 
environment project. 
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