
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1461

Context-Aware Formalization of Inter-Model

Relations

Ahmet Egesoy

Department of Computer Engineering,

Ege University

Izmir, Turkey

Email: ahmet.egesoy {at} ege.edu.tr

Abstract— Model-Driven Engineering involves incremental

development of code through the collaboration and

transformation of models by automated tools. The aimed

automation makes the semantic aspect of modeling, a significant

implementation concern since in a way it requires the machines

to understand what they are doing. In this paper we introduce an

approach in which, models are accompanied by scripts that

provide them with descriptions of their semantic context that

participate in their usage as a model. Our approach focuses on

inter-model relations and also uses some concepts from Peircian
semiotics.

Keywords-model-driven; megamodel; paradigms; semiotics

I. INTRODUCTION

Model Driven Software development (MDSD) is an
innovative paradigm in which models, instead of code takes the
leading role in the software development process. In a typical
MDSD project, there will inevitably be lots of models in
complicated relations with each other. Most probably there will
be many models that refer to each other or each other’s
elements. In the software development process it is common
that one element of a system is defined in one diagram and
referred in another. Classes for example are defined in CRC
cards and UML class diagrams and are referred in many parts
of the project such as the collaboration diagrams.

In a complicated development environment it is not easy
for the machine-mind to determine what each model means and
how it can contribute to answering the informational
requirements of the project. As the projects grow and the
requirements increase, models also get more and more
complicated. Dividing the models into interrelated modules can
be a good solution for dealing with complexity. In that case the
structural and semantic inter-model relations get even more
entangled. The main aim of this work is to propose a method
for making the meaning and functionality of each model clear
by constituting strong ties between the models and the other
models, and also the systems that they model.

It should be noted that in this work the unification principle
“Everything is a model.” as stated by Bezivin [1] is promoted
as a starting point for analyzing different kinds of model
interaction, instead of keeping the study restricted to UML
class diagrams. We also use the term context in a broad sense

such that it not only refers to the interpretation environment of
the model developer, but also to that of the model user.
Therefore in this work context awareness also implies
semantically integrated, dynamic behavior of models as they
respond to queries.

Most of this work is composed of a relational language’s
initial specification that makes use of Favre’s Megamodel [2].
Formal syntactic definition of the language is not given but the
changes made on the original approach are explained in detail,
leaving little space if any for ambiguity. We should also note
that the defined language is not an alternative for the existing
Megamodel, since the purposes of the two approaches are
completely different. Nevertheless by using existing
terminology, a set of complicated definitions could be made
tidier and easier to be expressed.

In the second section there is a discussion regarding how
models receive their meaning. In the third section a new inter-
model relational language will be described, based on the
existing Megamodel concept. In the forth section there is a
projection on how inter-model relations can be used by
automated tools for answering queries. Fifth section contains
the conclusions.

II. THE MEANING OF A MODEL

In MDSD where models should deliver working systems,
determining the meaning of a model is not just a philosophical
challenge but much more than that, it is a crucial design issue.
In model driven software engineering, models should
eventually end up in code or some part or aspect of code. The
meaning of a model lies in what it does for you in the
development process to reach the final product. In this respect
models get close to traditional code in the sense that they both
have perceivable input and output, and also perceivable
functionality.

People are culturally inclined to think in terms of dualities
and naturally assume a syntax-semantics duality which implies
that language utterances have one unique meaning, just as they
have one unique form. The everyday conversation often
neglects to underline the accepted status of the model concept
as a relation (or role) giving the impression that meaning was
an intrinsic quality of models that had to be discovered. This
leads to a confusing discussion about what semantics is and

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1462

what it is not [3]. On the other hand it is misleading to think of
meaning as an absolute monolithic entity that is related to
language semantics. If that were the case, machine translation
of Shakespeare into Japanese would be very easy. Instead, the
meaning of a complex linguistic structure is usually acquired
through a multi-phase symbol grounding process that generates
a series of interpretations of decreasing abstraction degrees. In
the interpretation process it is not only the language definition
that takes control but the context in which the interpretation
occurs and the intentions of the interpreter (person or machine)
are also important. In literature this scheme creates concepts
like subtext and subjectivity. In programming languages there is
the concept of binding and binding times. Evidently a model
potentially has more than one meaning.

A model without any contextual information is like a map
without a legend, a scale, a north arrow, a title or a “you are
here” mark. Note that these things are semantic anchors that
link the map to the real world in various ways and in their
absence; it would be very difficult to make an effective use of
any map. Unfortunately this is the case for many object-
oriented models that are created during various phases of
software development processes. In [4] Daniels suggested that
an “indication of purpose” was necessary for models. We have
mentioned in [5] the problem as the orientation problem. Our
theory is that if a sketch is drawn for some system with the aim
of using it as a model, (especially for formal usage that
involves a machine’s interpretation) we have to state what
exactly has been drawn on paper and how exactly it has been
represented (with which perspective, simplifications and
stylization etc.).

There are two areas that need to be clarified for each model.
One area is the language and context in which the syntactical
model elements are to be interpreted and the other is the
modeling services provided to the users of the model. Through
this language the model may provide modeling services such as
referencing, creation or modification of the original system or
parts of it.

Fig. 1 shows a hypothetical model representation as a layer
between the language that it uses and the language that it
creates. The linguistic references label in the figure represents
all the meta-information accessible by the model in order to
build the correct expression. This includes its meta-model
(dealing with syntactical issues) and also the contextual layers
that the model refers to. The domain references label marks the
entities that the model talks about. The modeling interfaces are
implicitly or explicitly defined transformation rules that
instruct the modeling environment about how the queries (and
which ones) should be answered by using the information
stored in the model.

Some of the modeling services provided by the model can
be defined explicitly by a rule written by the modeler. A rule
may define for example how to use a class diagram as a
definition for the classes that it contains. The other services can
be deduced from the relations of the model with other models.

For example if two models are known to have symmetry
between them, this means that certain attributes of one model
can also be read from the other model.

Figure 1. Linguistic relations of a model

Fig. 2 is a representation of a modeling interface. It is
defined as a transformation between a query and the result that
it produces. The script (or rule) in the interface guides the
transformation by referring to the model. Queries may come
from the user or from the environment itself as a part of a
bigger transformation task. Each new interface of a model is a
straightforward definition of a new type of use for that model.

III. RELATIONS BETWEEN MODELS

A key aspect of formalization for models is to codify inter-
model relations in a precise and effective way. Favre’s
Megamodel [2][6] is a significant concept of MDE that deals
with inter-model relations.. The relations of this language are
given below with their short definitions [2].

Figure 2. Model interface performs a transformation

The interesting aspect of the Megamodel is that it addresses a

strategic field of MDE that had been neglected for a long time;

that is expressing and comprehending the evolutionary

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1463

situations in a model driven development process. The

Megamodel defines a small but adequate relational language

for this task. It is composed of relations whose labels are

usually abbreviated as Greek letters

δ (DecomposedIn) : Whole-part relation.

μ (RepresentationOf) : The relation between a model and
the thing it models.

ε (ElementOf) : The relation between a set and its element
(Set concept includes languages too.)

χ (ConformsTo) : The relation between a model and its
meta-model. (Also that between a grammar and its instance)

τ (IsTransformedIn) : The relation between the input and
output of a transformation. (No constraint)

This language should be extended in order to form a more
elaborated language that is able to describe inter-model
relations with higher precision and detail. For this purpose we
propose to use:

 Some new relations

 Parameters for the existing relations

 More concrete definitions

The whole-part relation δ can be generalized into a family
of relations called as the structural relations. These relations
are about the structure of a system or the syntax of a model.
The relation is present between a record and its fields, as well
as an array and its elements. It forms a hierarchy tree that starts
with the biggest piece at the root and ends up with the smallest
ones at the leaves. Any given hierarchy tree is probably one of
the many possible structural views of the system. Different
schemes of parsing the system may result in different structural
views. So our δ relation should be able to express the following
through its attributes:

 The name of the part or subsystem

 If the system is a list or array, the element number

 The view in which the relation holds (a name for the
method of parsing)

 Moving upwards in the tree towards the root.

The first two are related with the identification of the part
within the whole, and the third piece of information indicates
the specific perspective of the system (or type name may be
indicated for a polymorphic object) under which the part exists.
By meeting the forth requirement it is possible to promote the
relation into being a complete language for tree browsing.
Simple directory path expression-like syntax is adopted for
addressing the nodes of the tree.

The Fig. 3 demonstrates the extended δ relation by
instantiating it between a basic student record (the node on the
left) and its field stdNo (denoted by the node on the right,
meaning student number). Although a basic record is very
unlikely to have other views, the example also indicates the

corresponding type of the data structure (student) according to
which the part (stdNo) is refered. The part’s name (for this case
the field’s name) is written as superscript and the view’s name
is written as subscript. The relation underneath is in the

Figure 3. Structural relations

opposite direction and it indicates a structural relation from the
pieces towards the whole. The superscript starts with double
periods, which indicates moving upwards. The label student is
written next to it, meaning that the target of the relation is the
closest container system, which is of type student. Without any
type name, double period just means immediate container.

The signification relation Σ (capital sigma) which originates
from the semiotics science [7][8] is one of the relations that
should to be added to the Megamodel’s set of relations. The
sigma family of relations is composed of the most basic
signification relation called the indexical signification [8] and
the most general understanding of signification which is called
the symbolic signification [8].

Semiotics is simply about meaning of things. In the science
of semiotics any meaningful linguistic entity is called a sign
and it is simply visualized as a pointer that points at a real-
world or a conceptual object. The science of semiotics deals
with the mechanisms of various instances of pointing at (called
semiosis) that can take place directly or indirectly through
some medium and being interpreted by an intelligent mind.

Indexical signification is a bipartite relation that simply
indicates that the source points at the target. The signification
takes place immediately by using a physical tie, without any
need for symbolic interpretation. It is simply a pointer.
Indexical signification is shown with a sigma, subscripted with
an “i” (Σi) . Symbolic signification on the other hand is a triadic
relation. It is based on the semiotic triangle of Perician
semiotics [9] but with a little modification [10]. The element at
the top corner of the triangle called interpretant (or concept)
has been replaced by an interpreter for some theoretical and
practical reasons [10] related to implementation on computers.

Symbolic signs as defined in semiotics [8] are those that
point at their object through an interpretation operation that is
based on conventions or norms. This physically means that the
relation between the sign and the object is random.
Randomness is implemented by introducing a third parameter
called the interpreter which constitutes the pragmatic relation
between the sign and the object. Interpreter provides a
transformation on the sign, yielding an indexical reference to
the object (which does not require further interpretation). In
some cases the interpreter can also represent the context in
which the sign functions. For instance in the programming

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1464

language C, an integer value can stand for a character or a
Boolean value as well as a numerical value. Similarly a class
name in UML may refer to an entity in the design model, as
well as another one in the conceptual model. In some
languages such ambiguities are prevented by implicitly stating
the required interpretation.

Signification is a triadic relation. The interpreter name is
shown as a third participant of a triadic relation as in the Fig. 4.
Alternatively it could be written as a subscript to the letter Σ.

Peircian semiotics [9][8] mentions a third kind of
signification called iconic signification. In [10] it is argued that
iconic signification which relies on similarity can be handled as
a special case of symbolic signification, therefore it does not
require a special representation.

Examples of the sigma relation are all around us, since it
represents the denotation of concepts, real world objects and
computational objects in a similar fashion. The relation
between the value in the name field of a student record, and the
real student in the real world is signification. Likewise an
identifier signifies a value for a compiler (or interpreter) and a
query signifies a result set for a relational database.
Signification (semiosis) takes place everywhere that there is
language.

The next relation that should be considered is μ. In the
Megamodel this relation is named as RepresentationOf and it is
defined as the relation between a model and its system under
study (SUS). On the other hand as the unification principle
(Everything is a model.) [1] suggests, the original definition of
the modeling relation that is generally accepted does not
impose any restrictions on the specific shape of a model. In fact
a model is defined as being any system that can provide
information about another system [11]. This definition is so
broad that any two systems that are somehow related can
potentially considered to be models of each other. For instance
the presence of a χ relation indicates that there is some
structural information on the other side. A Σ relation shows that
the address of the system is known and δ means that the other
system is already a part of the original system so in all these
cases there is some information shared.

Modeling concept is too general to be the definition of a
relation in a scripting language as μ relation is expected to
function. A well-defined relation should be making statements
about its source and target. On the other hand it is true that the
common understanding of modeling involves that the model
resembles the SUS somehow. Therefore one relation that would
worth representing is the symmetry between two systems.

Being a mathematical concept, symmetry has a concrete
definition. Two mathematical objects are said to be symmetric
to each other if one can be obtained from the other through a
sequence of operations that do not change some invariants. In
this case the symmetry is said to be taking place with respect to
those operations. It is hard to define a general methodology to
detect symmetry between two complex systems. However with
the help of the signification relation Σ, it is possible to
formulate a necessarily general definition.

Symmetry may take different forms based on the nature of
invariant that is preserved between the systems. It can be some
structural symmetry (similarity) or a purely abstract symmetry.
The preservation of an invariant between the systems can be
visualized as two systems pointing at the same value on a
certain domain. This way it is possible to formalize the
similarity type in terms of signification relations and express
them as semiotical patterns [10].

Figure 4. Symbolic signification triad

As depicted in Fig. 5, there is structural symmetry between
an object and a model if their interpretation in the same
language (more precisely by the same interpreter I) yields the
same value. The common interpreter is written as a subscript
for the μ relation and the relation is named μI. Structural
symmetry takes place when for example a complex
arithmetical expression is simplified (without changing the
value) or a software system is re-factored without changing its
functionality. There is no language change here.

There is also a loose kind of symmetry that we call
semantic symmetry. It simply means that two systems have the
same meaning although they are written in different languages.
The acquisition of the model from the system in this case
corresponds to a translation.

Fig. 6 shows the representation of semantic symmetry in
terms of signification relations. Because the model and the
object are represented in different languages, there is a
different interpreter for each. When the relation is meant to
define a transformation between the object and the model, it
corresponds to a translation. Translation is probably the most
well known transformation in the MDE literature since it
provides moving from one technological space to the other.
Transformation from the UML class diagram into a database
model is a common example. Straightforward examples for this
phenomenon are translation of basic sentences between natural
languages and translation of code between programming
languages.

Figure 5. Structural symmetry relation as a semiotic pattern

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1465

Figure 6. Semantic symmetry relation as a semiotic pattern

Because there are two languages involved, semantic
symmetry is not physically symmetrical. In order to indicate
which interpreter applies to which system, both are indicated in
the subscript. So the relation is named as μI1/I2 when written
from the object to the model and as μI2/I1 when written from the
model to the object.

Another relation that we propose as a new language
element for a better expression of inter-model relations is
called as Views and represented with a σ (lower case sigma).
This relation holds between two systems when the elements of
one provide indexed access to the elements of the other. This
creates a new view of the original system. In contrast with a μ
type of model that provides an encoded copy, a σ model
provides access to the original (thus up to date) information but
through its own format and perspective. σ relation can be
visualized as the relation between the Σ interpreter of a
language and the domain of that language. The interpreter
interprets the signs and returns indexical signs (true pointers)
that point at the values in a domain. At this point if we interpret
the domain as a referable object, the interpreter becomes its
model of type σ.

The Fig. 7 shows this condition that takes place in a
signification relation. The interpreter translates the signs into a
pointer that points at the small rectangle labeled as V (Value).
By doing this, the interpreter is also providing an index to the
elements of Domain. Between V and Domain there is δ relation
(implicitly shown) and as a result between the Domain and the
In our approach the letter χ continues to denote the
ConformsTo relation. We tend to see it as a ground element
(not a derived relation) for the basic practical reason that it can
be implemented directly. In fact it constitutes one of the two
main methods for implementing sets (The other method is to
explicitly list the elements.) and χ is also used more often than
ε (ElementOf). Grammars are structural models with clear-cut
interfaces. They are used for reading, writing (creating) and
checking (similar to reading) systems of a certain structure.
Some grammars can not be used for creation because they
provide a descriptive model of the system (in contrast with a
generative model) that does not give a complete picture of the
structure. This is an important aspect for the ConformsTo
relation so we propose that it should be indicated on a

Figure 7. Semiotic pattern for σ

superscript of χ as a minus sign for descriptive models and as a
plus sign for generative (complete) models.

The Fig. 8 describes a reading operation on which it is
possible to see χ and σ relations in context. The system to be
modeled is being read by using a descriptive meta-model
which it conforms to. The reading operation is marked with the
letter τ as it is a transformation. The operation creates a new
model which is a view of the system. The relation between the
view and the system is labeled as σ with a subscript M (the
meta-model’s identifier) and a superscript minus (indication of
an incomplete view).

As it can be noticed from the Fig. 8, the τ relation is triadic
by nature as it requires a meta-model as well as the system (to
be transformed) as input. A meta-model functions as a
grammar for reading and creation operations, however for
more complex transformations a full transformation script
should be provided.

The last Megamodel relation given by Favre [2] is the
ElementOf: ε relation does not need modification, thanks to its
mathematical root, providing reliable semantics and adequate
abstractness. On the other hand it also does not seem to be a
popular linguistic element that is expected to be used
frequently. The minimalism and completeness of the
Megamodel relation set are beyond the scope of this work,
however the challenge of building the perfect canonical set of
inter-model relations (the perfect Megamodel) should be noted
as an important concern for future work.

Figure 8. Reading the system with a meta-model

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1466

IV. DERIVED MODELING RELATIONS

The central theme of formalization of inter-model relations
is that if they constitute a rich and precise language, they can
be used in order to create models dynamically, as the need
arises. This can be achieved by making knowledge available to
the machines by making sure that all the models in a project are
semantically connected. This way every model has a relative
semantic address with respect to any other model and
functionally the whole project can become one big model. For
semantic completeness the projects should also contain
references to the real world or some form of ontological
domain on a common network.

The example in Fig. 9 contains a student (in the real world)
whose name is Bob, and a computer record object that models
it. The modeling relation between a real world object and a
computer object (which is in fact a record) is always an
incomplete semantic symmetry. This is shown as μ- in the
figure and the case that it is only semantic symmetry is not
explicitly indicated but it is obvious. There is a translation from
the real world to a data model. + Σ part of the expression
indicates that the model not only is symmetrical to Bob but it
also points at Bob. This is because the record contains a Name
field with which real world people can be referred. This makes
the record a logical statement (like Bob’s age is 15 and so on).
The Student object ConformsTo the Student class and this
relation is complete (marked as +). Between the Student class
and Bob there is a derived relation. This is also some kind of
indirect modeling because by looking at the class it is possible
to tell things about Bob (like that he is a student). This relation
between Bob and the class can be written as a combination of
the other two relations as: χ+ o (μ- + Σ).The letter “o” stands
for function composition operator.

Suppose that a university information system is being
developed in Java, in a model driven development
environment, and at some point in the process, the developer
asks the tool to create a code frame for a class called Advisor.
The first thing the tool should do is to check if a complete
model of the Java class Advisor exists or not. This may be in
the form of a detailed class diagram, a piece of pseudocode or a
CRC card. If the environment has access to a suitable
transformation script from the modeling medium to Java, that
script can be called with the instruction to create the Java class.

Figure 9. Modeling a real world object

It is also probable that a model does not exist for the Java
class Advisor. In that case the tool checks all the models for
any rule that promises to provide a symmetric model of
Advisor (one with that conforms to x where μ (Advisor,x)). It is
very likely that a general class diagram would answer this call.
The main purpose of such a class diagram is not to define the
individual classes that it contains. It usually serves as a
structural model of the system as a whole and focuses on the
relations between the classes. However by looking at a class
diagram it is possible to perceive some of the class definition
and a code frame can be written.

If a class diagram is allowed to manufacture special models
for the classes that it contains, then this should be formally
stated as a modeling interface that defines how an incomplete
definition of a class can be derived from the general diagram.
This can be done by writing a transformation script. For this
case where all the needed information is already there, the
transformation performs a reading operation and forms a view
of the required definition.

 σ o μ
 –
 (Advisor):- σ

+
 o δ

Advisor
 (CD) (1)

The script (1) is an interface rule example for a model. It
gives a representation of the rule that could instruct a tool that
such modeling is possible. The first line is the left hand side of
the rule and it specifies what kind of service is available. Here
it states that an incomplete reference to a symmetric model of
Advisor can be simulated. The right hand side of the rule
(second line) describes how to achieve this. The script tells the
tool to start with CD (class diagram’s name) then take the part
called Advisor (the delta relation) and then produce a full
reference to the available information. This rule of course is
just for the purpose of demonstration of the interface
phenomenon and typically more general rules are needed
without mentioning any class names directly.

V. CONCLUSIONS

In this work, an approach that aims achieving semantic and
functional integrity in a model driven software development
environment has been introduced. In this approach, a
declarative language is formed by extending Favre’s
Megamodel [2] and introducing two new relations:
signification and viewing. This language can be used in order
to specify semantic positions for models relationally, with
respect to each other and the real world concepts. The addition
of semiotic relations and concepts like symmetry to the
paradigm provides a better understanding of the inter-model
relations. This extended language with its increased expressive
power enables the composition of complex inter-model
relations by using the elements of a finite Megamodel. For
future work we aim the implementation of this scripting
language and the required inference mechanism and make them
parts of an integrated modeling and transformation
environment project.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1467

REFERENCES

[1] Bezivin, J., “On the unification power of models”. Journal on Software
and Systems Modeling vol. 4, 2005, pp. 171–188.

[2] Favre J.M., Nguyen, T., “Towards a megamodel to model software

evolution through transformations”, SETRA Workshop 2004, Elsevier
ENCTS, vol. 127, no:3, 2005, pp. 59-74.

[3] Harel, D., Rumpe, B., “Meaningful Modeling: What’s the Semantics of

‘Semantics’”, IEEE Computer Society, vol. 37, no. 10, 2004, pp. 64-72.

[4] Daniels, J., “Modeling with a sense of purpose”, IEEE Software, vol. 19,

no. 1, Jan./Feb. M. Fowler, Eds. 2002 , pp. 8-10.

[5] Sikici, A., “Modeling from a semiotic perspective” Proceedings of the
2005 Symposia on Metainformatics, ACM International Conference

Proceeding Series, vol. 214, no:14, New York, NY, USA, ACM ,2005.

[6] Favre, J.M., “Towards a basic theory to model model driven
Engineering”, 3rd Workshop in Software Model Engineering

(WISME2004), at the 7th International Conference on theUML
(UML2004), Lisbon, Portugal, 2004.

[7] Ryder, M., “Semiotics: language and culture” in Encyclopedia of

Science, Technology and Ethics. Macmillan Reference, USA, 2005.

[8] Chandler, D., Semiotics for Beginners, Aberystwyth University,

http://visual-memory.co.uk/daniel/Documents/S4B/,(Accessed
10.October.2014), 2005.

[9] Peirce, C.S.: Collected Papers of C. S. Peirce, Volume 8. Arthur W.

Burks, Eds., Harward University Press, Cambridge, Massachusetts,
1958.

[10] Egesoy, A., Topaloglu, N., Y., “A Bottom-up model of computational

semiotics”, Information Systems in the Changing Era: Theory and
Practice, Proceedings of ICISO’09, Aussino Academic Publishing

House, 2009, pp. 26-32

[11] Minsky, M.L., “Matter, mind and models”, Semantic Information
Processing, ed Marvin Minsky, MIT Press, 1968, pp. 425-432.

