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Abstract— One of the grand challenges in the design of 

portable/wearable devices is to achieve optimal efficiency and 

flexibility in a tiny low power package. Coarse-grained 

reconfigurable architectures (CGRAs) hold great promise for 

energy-efficient flexible designs for a domain of applications. 

CGRAs are very promising due to the ability to highly customize 

such architectures to an application domain.  However, mapping 

applications onto such architectures is a perennially difficult 

problem - the greater the customization of architecture, the 

greater the difficulty of mapping applications onto that 

architecture efficiently.  Our previous research has shown that 

crowdsourcing can be a highly effective means to solve small and 

moderate sized mapping problems.  This paper presents a case 

study on multiplayer techniques with the goal of scaling to larger 

and more complex mapping problems in a graceful manner. To 

conduct this case study, we have designed a multiplayer version 

of our interactive mapping game, UNTANGLED. In this work, 

we used the benchmarks that are 2 to 5 times as large as those we 

have served to players to date. Our results show that multiplayer 

techniques are effective, and the most effective style of 

presentation depends on player experience, with more 
experienced players benefitting from a higher level of autonomy. 

Keywords-mapping, placement, coarse-grained reconfigurable 

architectures, custom domain-specific architectures, crowdsourcing 

I.  INTRODUCTION  

Portable and wearable devices are ubiquitous, and the 

demand for these devices is increasing exponentially. These 

devices have a broad range of applications critical to health, 

safety and security, personal multimedia, and aerospace.  
Portable or wearable patient database displays can free doctors 

from being tied to cumbersome desktop computers and 

monitoring stations. Wearable sensors can monitor for 

dangerous toxins to protect firefighters and workers in other 

hazardous environments. Small, cheap, and low power 

computers and sensors can be deployed in planets and space 

systems to facilitate earth and planetary systems research. 

Portable/wearable devices have many competing design 

goals - they must be light-weight, mobile, flexible, low-power, 

and high performance.   The chip architecture that is selected is 

a primary determinant of how well a device meets these 

competing design goals.  First of all, the architecture must be 

reconfigurable; it must be capable of running many different 

applications within a domain.  Second, the architecture should 

be customized as much as possible so that it can run the 

intended applications with great efficiency and low power 

consumption. Field Programmable Gate Arrays, for example, 

while reconfigurable, are more general purpose and may be 

highly inefficient. Coarse-grained reconfigurable architectures 

(CGRAs) are an intriguing spot in the design space. They are 

reconfigurable and highly customizable [1], [2]. A typical use 
case for CGRAs today would be to run computational intensive 

kernels of a collection of related applications such as 

applications from the image-processing domain. However, they 

may be capable of doing much more. 

CGRAs are composed of relatively high-level 

computational elements such as Arithmetic and Logic Units 

(ALUs), which are capable of doing operations such as 

addition, subtraction, and a simple interconnect such as 

communication between nearest neighbors. To make use of 

CGRAs, it is required to map a collection of applications in the 

form of data flow graphs (DFGs), onto a given architecture 

design.  However, mapping dataflow graphs onto such 
architectures is especially challenging, precisely because of the 

customization that provides their advantage. The difficulty of 

mapping onto CGRAs may be one bottleneck to widespread 

adoption ([3], [4], [5], and [6]).  

We focus on the mapping problem in this manuscript. 

Figure 1 shows an example of mapping a data flow graph of an 

application onto a stripe-based architecture. A DFG can be 

represented as a collection of nodes connected by edges. Edges 

are directional, representing flow of data from parent to child.  

A mapping of a DFG onto a reconfigurable architecture 

consists of an assignment of operators in the DFG to arithmetic 
and logic units (ALUs) in the reconfigurable architecture such 

that the logical structure of the application is preserved and the 

architectural constraints of the architecture are followed. In the 

stripe-based architecture shown in Figure 1, nodes are arranged 

in horizontal stripes, each of which is connected to all nodes in 

the stripe below them using a full crossbar interconnect. 
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Results of mapping the indicated DFG onto the stripe-based 

architecture are shown on the right side of the figure. 

 

 

Figure 1. Mapping of a data flow graph onto a stripe-based 
architecture. 

 

To begin to address the mapping problem bottleneck, we 

are pursuing a crowdsourcing approach, with the goals of both 

obtaining high quality mappings and uncovering human 
strategies. Specifically, we designed an interactive mapping 

game, UNTANGLED [7], which has been online and active for 

almost two years.  UNTANGLED has received the People's 

Choice Award in the Games and Apps category of the 2012 

International Science and Engineering Visualization Challenge 

conducted by the National Science Foundation and Science 

([8], [9]). From our experimental studies conducted using 

single player version of UNTANGLED, it was clear that the 

mapping problem can be successfully crowdsourced [7]. After 

the success of the single player version of our game, one very 

important research challenge that we wanted to address and 

focus on was - how large and difficult mapping problems can 
be presented to the crowd when the problem size is too big and 

complexity is high for an individual player to handle. 

In this paper, we describe a case study to explore an 

effective approach for presenting large and difficult mapping 

problems to the crowd using UNTANGLED. We explore how 

large and difficult mapping problems can be effectively 

crowdsourced. In order to perform the case study, we have 

developed a multiplayer version of our game that allows 

players to work in teams and communicate with each other to 

solve large and more difficult problems. This paper presents a 

case study to find out how multiplayer versions of 
UNTANGLED can be used to solve graphs that are up to 2 to 5 

times as large as those we have served to players to date. 

Our overall approach is to divide large graphs into clusters, 

so that individual players can focus on mapping smaller parts 

of the graph individually and then work together as a team to 

merge and adjust their solutions.  We explored two options: (a) 

Default clusters, where the graph is sub-divided into clusters 

in-house and presented to the players, and (b) Player clusters, 

where players cooperate to divide the graph into clusters. We 

compared these two options from the multiplayer game to the 

single player option (Single). 

We had two hypotheses entering this research work: 

1) Working in teams will result in faster and better 

solutions than working alone. In other words, the two 

multiplayer options Default clusters and Player clusters should 

give better results than the Single option. 

2) The multiplayer option Default clusters will result in 

faster and better solutions than the multiplayer option Player 

clusters. In other words, when players are given good initial 
clusters with which to begin, they will be able to launch right 

into solving the individual clusters, and the work of merging 

these clusters will be less, due to the care taken to provide 

players with clusters having minimal interconnections. 

This paper describes the multiplayer version of our game 

UNTANGLED and the results obtained from our case study. 

We found out that working in teams typically produced better 

results than working alone.  We also found to our surprise that 

players using the Players cluster option tended to produce 

better results, although it required significantly more time than 

the other options on average. Informally, player preferences 
were seen to evolve based on experience with the game.  We 

present and discuss these results in the sections that follow. 

II. RELATED WORK 

Our related research can be divided into three areas: coarse 

grained reconfigurable architectures (CGRAs), CGRA 

mapping algorithms, and games with a purpose. We discuss 

each of these areas below. 

A. Coarse Grained Reconfigurable Architectures 

A variety of coarse grained reconfigurable architectures have 

been proposed over the last 18 years, offering interesting 

alternatives and variations: PipeRench / Kilocore [10], RAPID 

[11], MATRIX [12], GARP [13], Morphosys [14], REMARC 

[15], KressArray [16], RAW [17], RSPA [2], ADRES [18], 

MORA [19], the CGRA architecture of Kim and his 

colleagues [20], and SmartCell [21]. However, research in 

CGRA architectural design on a broad scale continues. No 

single design has emerged as dominant, and there is a need for 

efficient design exploration techniques, along with high 
quality and flexible mapping algorithms to allow these 

techniques to achieve their full promise.  

B. Mapping algorithms 

The difficulty of the mapping problem has been well 

discussed in the literature, and most non-trivial formulations 
are NP-complete [22]. Most existing algorithms fall into one of 

several styles, including greedy algorithms, randomized 
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algorithms, clustering algorithms, Integer Linear Programming, 

and Analytical Placement. Comprehensive discussion and 

further references can be found in the following surveys: [23], 

[24], [25], [26], [27]. We note that other researchers have also 

suggested that the difficulty of mapping may be one bottleneck 

to widespread coarse grained reconfigurable architectures 

(CGRAs) adoption [4]. There is much room for improvement 

in any or all of these mapping algorithms, especially when we 
wish to explore novel highly customized architecture designs. 

In our previous research, we have shown that the mapping 

problem can be successfully crowdsourced [7] and in fact 

observations of human game play can lead to highly effective 

automatic mapping algorithms [28]. In the current work, we 

focus on large and complex mapping problems that are difficult 

for an individual to handle. 

C. Games with a Purpose 

The potential of human computation for Electronic Design 

Automation (EDA) has been nicely described in the research 

of DeOrio and Bertacco [29], [30], who mention, for example, 

the resemblance of the 1980’s video game Pipe Dream (Pipe 

Mania [31]) to the problem of routing and the potential for 

casting placement as a packing puzzle in the manner of Tetris. 

DeOrio and Bertacco contribute a visual game environment 

for solving instances of the SAT problem [32], which has 

several interesting features for handling the problem of 
scalability, including presenting the problem to players at 

different scales and supporting multi-player versions of the 

game that involve collaboration and/or competition. In 

multiplayer FunSAT, one of the strategies players use is a 

collaborative strategy, where each player works a smaller 

chunk of the problem and players interact with each other to 

get to the final solution. Another strategy that players use is 

antagonistic strategy where more skilled players take control 

over other players' sub-problems. Our multiplayer game 

incorporates some features similar to FunSAT. In particular, 

we introduce a collaborative technique for solving the 

mapping problem. Throughout game play, players can 
communicate using a chat window.  

 

To our knowledge, we are the only researchers to solve the 

mapping problem for custom reconfigurable architectures 

using a crowdsourcing approach. In our previous research, we 

have shown that the graphs containing approximately upto 

sixty nodes and 70 edges can be solved effectively with 

crowdsourcing [7].  The goal of the research described in this 

paper is to extend beyond that size in a graceful manner. 
 

III. PROBLEM STATEMENT 

Figure 2 shows one view of the design space exploration 

flow in which a designer may interact with various tools while 

exploring architectural designs for their applications.  In this 

flow, the designer first configures a specific architecture, 

supplies a set of benchmarks and specifies objectives that 

should be optimized (e.g., a relative importance of power vs. 

performance vs. area).  The benchmarks (presented in the form 

of Data Flow Graphs (DFGs) in our case) are mapped onto the 

proposed architecture, and the resulting mapped designs are 

simulated to obtain statistics relevant to the designer's 

objectives.  These statistics are fed back to the designer, who 

then decides how to proceed to improve the design.  The role 

of the designer could also be replaced by an automatic routine 
that iteratively attempts to optimize the architecture against a 

specific objective or cost function.  

 

 

Figure 2. One view of the flow of information for a 
designer exploring various architectural design options. 

 

In our research, we focus on the mapping problem shown in 
the orange block in Figure 2. As we have mentioned earlier that 

the mapping problem is very challenging for customized 

architectures. We have crowdsourced the mapping problem, 

relying on human flexibility, creativity, intuition, and 

persistence, rather than on a specific, potentially limited 

automatic mapping algorithm. 

In our previous work, we have found out that the mapping 

problem can be successfully crowdsourced [7]. The graphs 

containing approximately upto sixty nodes and 70 edges can be 

solved effectively with crowdsourcing. Players outperformed 

Simulated Annealing by 2.5 standard deviations on average for 
a set of benchmarks and architectures [7]. In this research, we 

are exploring an effective approach for crowdsourcing large 

and difficult mapping problems. Our goals in this research are: 

(i) to find out if working in teams is a better approach for 

solving large and complex mapping problems than working 

alone; (ii) to find out if the problems should be divided into 

smaller chunks and then presented to the players or the raw 

graphs should be given to players and have them partition these 

graphs into sub-clusters and solve them. 
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Figure 3 (a). A data flow graph (H1) 

 

 

Figure 3 (b). The same graph shown on the game screen 
(H1). 

 

Figure 3. The mapping problem consists of placing a DFG 

onto a given architecture.   The figure on the top shows one of 

our example DFG's (H1), and the figure on the bottom shows 

the same graph shown on the game grid. This example maps 
the DFG onto 4Way2Hops mesh architecture. 

IV. PRESENTING MAPPING PROBLEM AS A GAME 

In this section, we describe how the mapping problem can 

be encapsulated in a game and presented to players. In our 

previous research, we have designed an interactive mapping 

game, UNTANGLED [7]. The game is available online at 

https://untangled.unt.edu. From the designer’s perspective, 

UNTANGLED supports a variety of architectures and it allows 

customization of interconnect arrangements and placement of 

dedicated vertical routes and input/output (I/O) blocks. 

From the player’s perspective, UNTANGLED presents a 

succession of problems where a data flow graph (DFG) must 

be mapped onto a specific architecture. To construct winning 

mappings, players optimize their scores by moving nodes of 

the DFG within a game grid to create compact arrangements 

where parents are close to their children, where “close” is 

defined based on the interconnect structure of the architecture. 

Figure 3(a) shows an example of a DFG used in the game. 
This is the H1 benchmark, which is the inverse discrete cosine 

transform of MPEG II video compression. Here, nodes are 

arithmetic operators, logical operators, multiplexers, or 

passthroughs. The DFG is presented to players in an abstract 

manner, with ALU’s as red rectangles shown in Figure 3(b). 

This representation was adequate for our examples. 

The game grid is an array of locations displayed to our 

players, within which nodes of a DFG can be placed. We can 

think of the game grid as an array of ALUs or other functional 

elements, which have not yet been assigned operations. Placing 

a node from the DFG in a grid location corresponds to 
assigning an operation to a functional element. The 

architecture’s interconnect defines the paths along which data 

can flow efficiently within the game grid. In game play, players 

are presented with an architecture definition, which is 

abstracted as an icon showing legal connections between a 

node and its neighbors as shown in Figure 3(b). 

The game interface allows players to drag and drop nodes 

within the game grid. Players can select and move clusters of 

nodes. The interface allows players to rotate and mirror their 

clusters. Players can add and remove passthroughs, which are 

often required to route data from producer nodes to consumer 

nodes within constraints of the architecture. Throughout the 
game play, players can see their score and the violations in 

their graph. They get incentives such as badges, medals during 

the game play and they can track their scores / rankings in 

comparison to other players around the world on the game 

leaderboard. 

V. UNTANGLED MULTIPLAYER 

In this section, we describe the multiplayer version of the 

UNTANGLED game, which has been designed to allow 

players to work both individually on their own clusters and also 

together as a team to solve a graph. The game is available 

online (https://untangled.unt.edu/multiplayer). We describe 
each of the three treatments, Default clusters, Player clusters, 

and Single below. 

For the Default clusters version of the game, clusters were 

created in-house and presented to the players. To create the 

clusters, we used a combination of off the shelf clustering 

techniques and manual adjustment to obtain clusters that were 

nearly equal in size and had minimal connections between 

them. 

Figure 4 shows some screenshots from the Default clusters 

version of our interface. Figure 4(a) shows the initial game 

https://untangled.unt.edu/
https://untangled.unt.edu/multiplayer
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screen, where a player can start a new game, continue an 

existing game, or join an existing game from other teams who 

have made their games public. A player who has joined a game 

has the option to select one of the predefined clusters, as shown 

in Figure 4(b). Once a cluster has been selected, the players go 

to their own play screen, shown in Figure 4(c). In this 

screenshot, the player is playing the dark blue cluster and 

communicating with other players using a chat window. The 
orange, light-blue, and green nodes that we see in this dark blue 

colored cluster are called port nodes. This means that this 

cluster is connected to the orange, light-blue, and green clusters 

through these port nodes. In addition to manipulating their own 

cluster, players also have access to the complete initial graph at 

all times. Players can view the most recent clusters from other 

players, but cannot make modifications to clusters owned by 

other players. They can only manipulate their own clusters. 

 

 

Figure 4 (a). Create a new game or Continue or Join an 
existing game. 

 

Figure 4 (b). A screen with clusters, initial graph, and 
merged graph options. 

 

Figure 4 (c). A player playing a cluster and a chat window 
for talking to the other players. 

Figure 4. Multiplayer game interface.  

 

Once all the clusters have been individually played by the 

players of the team, the players have three options to choose 

from: (i) they can work together to merge the clusters and reach 

a final solution, or (ii) they can appoint a leader who is in 

charge of integrating all the clusters to get a final solution, or 

(iii) each player can merge the clusters and reach a final 
solution and the best final solution among their group will 

make to the leaderboard.  

The Player clusters version of the game is very similar to 

Default clusters. However, it has one initial step. At the 

beginning of the game, the team works together to form the 

clusters from a raw, uncolored initial graph. Once clusters are 

selected, players individually sign up for clusters and play 

proceeds as with the Default cluster version. Once the team 

has formed clusters, the clusters cannot be changed. 

The Single version of the game that was presented to users 

was identical to the original UNTANGLED game as described 
in [7]. No clusters are formed; the entire graph is played as a 

single cluster, with no merging required. Teams had the option 

to play the entire graph while sitting together, or play it 

individually. In some cases, all team members from a team or a 

few players from a team play individually a particular graph 

and they generate multiple final solutions. In those situations, 

we take the total time into account that went into getting all the 

legal final solutions from that team and the best solution can 

make it to the leaderboard.  

Figure 5 shows initial and final graphs for the best solution 

in each of the three styles of game play. The benchmark is L1 

(described in Section VII). The architecture is 4Way1Hop (also 
described in Section VII). 
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Figure 5. Benchmark L1 mapped onto the 4Way1Hop mesh 
architecture (Best solution using each technique). 

 

VI. USER STUDIES 

The experimental protocol for our user studies was determined 

to qualify for an exemption from the Institutional Review 

Board of the University of North Texas. IRB protocols were 

followed in these studies. We conducted formal in-house 

studies in our lab where players were given an introduction to 
the game and invited to play, while talking out loud about 

what they were doing and their goals and expectations at each 

step. Observations were made by our players. We have around 

forty participants who have played the multiplayer version of 

the game so far.  

VII. EXPERIMENTS 

For our case study, we used two architectures - 4Way1Hop 

and 8Way and two benchmarks in each architecture. 

4Way1Hop (shown in Figure 6 Left) is a mesh architecture 

allowing connectivity to direct horizontal and vertical 

neighbors, as well as horizontal and vertical connections that 

skip one node. 8Way (shown in Figure 6 Right) is a mesh 
architecture where nodes can connect to any of their 8 

neighbors. These are both common CGRA architectures with a 

good mix of power savings and performance but present quite 

difficult mapping problem to the players because of their 

difficult connectivity patterns. We assume that inputs can be 

loaded and outputs read from any ALU. The benchmark 

statistics are shown in Table I. The table shows the number of 

nodes, edges, highest degree, and number of nodes with 

degree 4 and higher in the benchmarks. We selected matrix 

multiplication, and matrix inversion benchmarks for our 

studies that appear in most of the signal processing 

applications. These benchmarks are up to 2 to 5 times as large 

as those we have served to players to date. 
 

  

                    
 

Figure 6. 4Way1Hop (Left) and 8Way (Right) mesh 
architectures. 

 

We have studied three techniques to solve large and more 

difficult graphs. The first two techniques use the multiplayer 

version of the game where players solve the graphs in teams: 

(a) Default clusters, where the graph is sub-divided into 

clusters in-house and presented to the players, (b) Player 

clusters, where players cooperate to divide the graph into 

clusters. For the third option, we presented raw initial graphs to 

individuals in a single player game Single. 

A total of 9 teams of 4 students each participated in our 

experiments. Students in our case study were recruited from the 

UNT EE student population and had some knowledge of 

engineering, although as we have shown in our previous 

research [7], this background is not required to perform well in 

the game. 

Twelve total treatments were possible: 

 Three variations of the game (Default clusters, Player 
clusters, or Single), 

 Two architectures (4Way1Hop or 8Way), and 

 Two benchmarks (L1 or L2) 

Teams were presented with treatments in random order in order 
to minimize the influence of learning effects in our results. The 

number of treatments completed by each team ranged from 2 to 

7. On average, teams completed 5 of the 12 treatments for a 

total of 43 completed solutions, representing 14362 total 

minutes of game time. 
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TABLE I.  BASIC INFORMATION RELATED TO THE BENCHMARKS 

 Nodes Edges 
Highest 

Degree 

No. of 

Degree 4 

Nodes 

No. of 

Degree 5 

Nodes 

No. of 

Degree 6 

Nodes 

No. of 

Degree 7 

Nodes 

L1-Matrix 

Multiplication 
108 116 5 0 4 0 0 

L2-Matrix 

Inversion 
336 354 7 4 0 4 1 

 

A. Our Simulated Annealing Algorithm 

Simulated Annealing (SA) is frequently used for placement 

because of its flexibility and good quality performance. We 

developed our own SA algorithm that closely follows that of 

Betz [33], with the exception that we do not use SA for 

placement only, but perform routing in the inner loop of the 

algorithm. Details of our custom SA can be found in [7]. The 

scoring function for the SA was designed in a way to 

encourage the algorithm towards good solutions. It takes into 

account the penalty for violations and area. We compare our 
players’ results with SA. 

 

VIII. RESULTS 

In this section, we first present an overview of our results, and 

then answer the following questions - (i) Can players solve the 

mapping problem?, (ii) Is multiplayer better than single 

player?, and (iii) Which multiplayer technique is better? 

 

A. Results Overview 

We compare performance for the Default clusters, Player 

clusters, and Single variations for each benchmark and 

architecture separately. In particular, we ask the question for a 

given problem (e.g., mapping the L1 benchmark to the 

4Way1Hop architecture), which of these three variations of 

the UNTANGLED game resulted in the best final mapping of 

that benchmark onto the architecture? 

 
These best in class results are broken out in Table II, Table III, 

Table IV, and V. In particular, Table II gives the best 

mappings for benchmark L1 and the 4Way1Hop architecture, 

Table III gives the best mappings for benchmark L2 and the 

4Way1Hop architecture, Table IV gives the best mappings for 

benchmark L1 and the 8Way architecture, and Table V gives 

the best mappings for benchmark L2 and the 4Way1Hop 

architecture. We consider these results one by one. 

 

In these tables, we see the size of each final graph in terms of 

“Width X Height” as well as total number of “Functional 

Units.”  Functional units are counted as the number of units in 
the smallest axis aligned grid that surrounds the final graph. 

“Pass Gates” are the pink elements required to pass data 

between nodes that are too distant to be connected directly by  

 

 

the 4Way1Hop interconnect. “Scores” are given next. These 

are the scores seen by the teams and individual players. 

Players are evaluated and compete based on this score. Higher 

scores are better. Violations in the mapped solutions are also 

shown in the tables. These show the edges that cannot be 

routed under the given architectural constraints. 

 

Finally, the tables give time, in minutes, that the team spent 
solving the graphs, enumerated by time spent to make the 

clusters in the Player cluster version of the game, time spent 

solving clusters in both multiplayer versions of the game, time 

spent in merging the clusters for multiplayer games, and total 

time spent in any version of the game. 

 

Table II shows the size of the grid, number of pass gates used, 

scores obtained, and time spent to achieve the highest scoring 

solutions for the 4Way1Hop architecture and L1 benchmark 

using all three techniques (Default clusters, Player clusters, 

and Single). Results for this case can be viewed visually in 
Figure 5. Players obtained the most compact mapping solution 

for the Player clusters option, with a 9x14 grid, or 

equivalently 126 functional units. SA created a compact 

mapping but its score is lower than all other options but 

Default clusters. In terms of time required to solve the graph, 

however, the Player clusters option took longer than the 

Default clusters option for players to reach their final 

mapping solution. In this case the Single variation resulted in 

an intermediate score of the three options, and required the 

greatest amount of total time. 

 

Table III shows the size of the grid, number of pass gates 
used, scores obtained, and time spent to achieve the best 

solution for the 4Way1Hop architecture and L2 benchmark 

using all three techniques (Default clusters, Player clusters, 

and Single). In this case, the Player clusters option again gave 

the highest score, followed by Single and then Default 

clusters. Solving the Player clusters option required an 

extraordinary amount of time in this case, even compared to 

the Single player variation. In this case, some of the teams 

tried several different strategies to solve each cluster and then 

tried several ways to integrate these clusters together to get the 

final solution. We took into account all the time players of the 
team (who provided the best solution) put in trying out 

different options to get to the final solution. Note that although 

the SA solution is more compact and has a higher score, it is 
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not a valid mapping, having 6 violations, edges that cannot be 

routed using this architecture. In this case, SA failed to find 

any valid solution. 

 

TABLE II.  GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST 

SOLUTION IN EACH CATEGORY FOR 4WAY1HOP ARCHITECTURE AND L1 

BENCHMARK. BEST VALUES ARE SHOWN IN BOLD 

 
Default 

clusters 

Player 

clusters 
Single SA 

Width X Height 16x14 9x14 11x14 14x14 

Functional Units 192 126 154 134 

Pass Gates 54 14 24 26 

Scores 413930 462880 447660 429960 

Violations 0 0 0 0 

Time Spent in making 

clusters (mins) 
- 56 - - 

Time Spent in solving 

clusters (mins) 
57 40 - - 

Time Spent in merging 

clusters (mins) 
37 122 - - 

Total Time Spent (mins) 94 218 232 1320 

 

 

TABLE III.  GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST 

SOLUTION IN EACH CATEGORY FOR 4WAY1HOP L2. BEST VALUES ARE SHOWN 

IN BOLD 

 
Default 

clusters 

Player 

clusters 
Single SA 

Width X Height 27x26 24x18 18x24 20x20 

Functional Units 675 408 432 362 

Pass Gates 138 61 69 26 

Scores 2543470 2682300 2679000 2685190 

Violations 0 0 0 6 

Time Spent in making 

clusters (mins) 
- 12 - - 

Time Spent in solving 

clusters (mins) 
239 344 - - 

Time Spent in merging 

clusters (mins) 
70 579 - - 

Total Time Spent 

(mins) 
309 935 499 

2747 

(approx. 

2 days) 

 

 

Table IV shows the size of the grid, number of pass gates 

used, scores obtained, and time spent to achieve the best 

solution for the 8Way architecture and L1 benchmark using all 

three techniques (Default clusters, Player clusters, and Single). 

The results show that SA produced the most compact mapping 

and highest score, followed closely by Default clusters. For 
this example, the Default clusters result was superior in terms 

of score and far superior in terms of time required to solve the 

graph. 

 

Table V shows the size of the grid, number of pass gates used, 

scores obtained, and time spent to achieve the best solution for 

the 8Way architecture and L2 benchmark using all three 

techniques (Default clusters, Player clusters, and Single). The 

results show that Player clusters option provides us the most 

compact mapping solution, followed by Default clusters and 

then Single. For this example, you may note that the Default 

clusters result required an inordinate amount of time, most of 
it spent merging the clusters. In this case, the winning team 

elected to have all four team members separately attempt the 

merge and kept the highest scoring result. Time required for 

the three failed attempts is also included in the final timing 

result. In this case, SA again failed to find a valid mapping. 

 

TABLE IV.  GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST 

SOLUTION IN EACH CATEGORY FOR 8WAY L1. BEST VALUES ARE SHOWN IN 

BOLD 

 
Default 

clusters 

Player 

clusters 
Single SA 

Width X Height 12x14 15x15 14x13 13x13 

Functional Units 156 210 182 134 

Pass Gates 38 96 53 26 

Scores 364380 318020 352550 368820 

Violations 0 0 0 0 

Time Spent in making 

clusters (mins) 
- 14 - - 

Time Spent in solving 

clusters (mins) 
29 345 - - 

Time Spent in merging 

clusters (mins) 
129 228 - - 

Total Time Spent (mins) 158 588 602 1358 

 

TABLE V.  GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST 

SOLUTION IN EACH CATEGORY FOR 8WAY L2. BEST VALUES ARE SHOWN IN 

BOLD 

 
Default 

clusters 

Player 

clusters 
Single SA 

Width X Height 30x22 27x22 31x27 20x20 

Functional Units 630 567 837 372 

Pass Gates 201 145 183 36 

Scores 2352120 2400800 2288000 2493230 

Violations 0 0 0 4 

Time Spent in making 

clusters (mins) 
- 1 - - 

Time Spent in solving 

clusters (mins) 
232 74 - - 

Time Spent in merging 

clusters (mins) 
927 888 - - 

Total Time Spent (mins) 1159 963 398 

2851 

(approx. 

2 days) 
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B. Can players solve the mapping problem? 

In our previous research, we have shown that the graphs 
containing approximately up to 60 nodes and 70 edges can be 

solved effectively using crowdsourcing [7]. Players 

outperformed Simulated Annealing by 2.5 standard deviations 

on average for a set of benchmarks and architectures [7]. 

Players generated high quality, reliable mappings, and 

outperformed our custom SA algorithm in 37 out of 42 trials 

[34]. In this research, we answer the following question - For 

larger and difficult mapping problems, how did our players do? 

Players did better than SA 3 out of 4 times. They solved the 

large and complex graphs and generated feasible solutions in 

all the test cases. SA did not find a valid solution 2 out of 4 

times in this case study. 

C. Is Multiplayer Better than Single Player? 

Our first hypothesis was that working in teams would result 

in faster and better solutions than working alone. In view 

of that hypothesis, we first present overall results comparing 

the three techniques in terms of score and time. Table VI 
shows the overall comparison of the three techniques studied 

here. Broadly, we see that players who solved the same graph 

with more than one variation of the game performed 1.6% 

better than their own average score when they played the 

Player clusters variation, 0.9% better than their own average 

when they played the Default clusters variation, and 2.4% 

worse, when they played the Single variation, suggesting a 

trend favoring Player clusters followed by Default clusters 

followed by Single. 

 

TABLE VI.  OVERALL COMPARISON OF THREE TECHNIQUES 

 
Default 

clusters 

Player 

clusters 
Single 

Difference from average 0.9% 1.6% -2.4% 

Count of “wins” 4 wins 6 wins 3 wins 

Count of “losses” 4 losses 3 losses 6 losses 

 

 

We can view these results differently in terms of “wins” and 

“losses,” for each game variation, here expressed as the 

number of times a treatment resulted in a score that was above 

a team’s own average for a given benchmark and architecture 
(a “win”) or below it (a “loss”). In Table VI, we can see that 

for Player clusters, teams beat their own average six of ten 

times. For Default clusters teams showed as many “wins” as 

“losses.” For Single, teams beat their own average only four 

of ten times. 

 

For more specific detail, to obtain the results in Table VI, we 

considered results for each team, architecture, and benchmark 

individually. We computed the average of the scores obtained 

by that team using Default clusters, Player clusters, and 

Single variations, including only whichever variations that 

team actually played. We then calculated the percentage 

difference from average for all variations for this team, 

architecture, and benchmark. These results were averaged over 

all the teams, benchmarks, and architectures to obtain the 

compiled results shown in Table VI. 

 

D. Which Multiplayer Technique is Better? 

Our second hypothesis was that the multiplayer option 

Default clusters will result in faster and better solutions 

than the multiplayer option Player clusters. 

 

Table VI has already given some indication to the contrary. In 

terms of score, on average, teams performed better with the 

Player clusters option than for Default clusters. 
 

Table II, Table III, Table IV, and V also present information 

to the contrary, in that the Player cluster variation produced 

the best result for three of the four benchmark / architecture 

combinations. 

 

However, we can note from Table II, Table III, Table IV, and 

V that Player clusters may be more time consuming to play. 

In this section, we dig more deeply into the timing results. 

 

Table VII shows the breakdown of the average time in 
minutes spent by our players in building clusters, solving 

clusters, and merging clusters to reach a final solution for 

benchmark L1 and the 4Way1Hop architecture. This table 

shows that the least time was required for the Default clusters 

variation, followed by Single, followed by Player clusters. 

 

TABLE VII.  BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS, 
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION - 

4WAY1HOP L1 AND AVERAGED OVER ALL THE TEAMS 

 
Default 

clusters 

Player 

clusters 
Single 

Time Spent in making clusters - 28 - 

Time Spent in solving clusters 68 50 - 

Time Spent in merging clusters 55 181 - 

Total Time Spent 123 259 188 

 

 

Table VIII shows the timing breakdown for benchmark L2 and 

the 4Way1Hop architecture. Here, the trend is similar, 

although the larger graph required more time to solve. In this 

case, there is virtually no difference from the time required for 
the Default clusters vs. the Single variations.  
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TABLE VIII.  BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS, 
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION - 

4WAY1HOP L2 AND ALL THE TEAMS 

 
Default 

clusters 

Player 

clusters 
Single 

Time Spent in making clusters - 19 - 

Time Spent in solving clusters 284 198 - 

Time Spent in merging clusters 124 333 - 

Total Time Spent 408 549 407 

 

 

Table IX shows the timing breakdown for benchmark L1and 

the 8Way architecture. Again, the trend shows that the least 

time was required for the Default clusters variation, followed 

by Single, followed by Player clusters. 

 

Table X shows the timing breakdown for benchmark L2 and 

the 8Way architecture. Here, timing information does not 
follow the typical trend, showing relatively little time on 

average applied to the Single variation, followed by Player 

clusters then with the greatest time spent on Default clusters. 

In this case, we have noticed that a couple of teams tried 

several different strategies to solve their clusters and several 

different ways to merge them together to get to the final 

solutions. This is the most difficult of the four benchmark / 

architecture combinations. 

 

IX. DISCUSSION AND CONCLUSION 

In this paper, we have described a multiplayer version of 
the game UNTANGLED, with the goal of crowdsourcing the 
problem of mapping large algorithms to custom domain 
specific architectures. Our objective was to make it possible to 
crowd source the mapping of larger and more complex graphs 
than have been seen to date, while keeping the process 
manageable and enjoyable for the players. 

 

TABLE IX.  BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS, 
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION - 

8WAY L1 AND ALL THE TEAMS 

 
Default 

clusters 

Player 

clusters 
Single 

Time Spent in making clusters - 15 - 

Time Spent in solving clusters 62 345 - 

Time Spent in merging clusters 173 203 - 

Total Time Spent 235 563 257 

 

 

TABLE X.  BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS, 
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION - 

8WAY L2 AND ALL THE TEAMS 

 
Default 

clusters 

Player 

clusters 
Single 

Time Spent in making clusters - 25 - 

Time Spent in solving clusters 250 116 - 

Time Spent in merging clusters 458 249 - 

Total Time Spent 709 390 170 

 

 

Results of our case study show that the multiplayer game 

produces better results than the previous, single player version. 

Two sources of analysis support this result. First, teams playing 

more than one variation obtain better scores on average with 

either multiplayer variation than with the single player 

variation. This result can be seen in Table VI, both as a higher 

percentage difference from average score for the multiplayer 
variations, as well as a greater number of “wins” vs. “losses” 

for multiplayer. 

Second, the overall best scores obtained for each 

benchmark / architecture combination were obtained using a 

multiplayer variation rather than a single player variation, as 

shown in Table II, Table III, Table IV, and V. Specifically, the 

Player clusters variation performed best in three out of four 

cases, and the Default cluster variation performed best in one 

out of four cases. The Single variation sometimes took second 

place, but it was never the best of the three solutions. 

Our second hypothesis was that the Default clusters 
variation would produce better results than the Player clusters 

variation. However, in terms of scores, the opposite hypothesis 

was better supported, both in the Table VI and cumulatively 

Table II, Table III, Table IV, and V. Results of our case study 

show that the Player clusters variation typically produces better 

scores (i.e., better final graphs) than the Default clusters 

variation. 

However, we observed that playing the Player clusters 

variation required considerably more time for teams than 

playing the Default clusters variation. In fact, the extra time 

taken cannot be explained by the extra time required to make 

the clusters in the first place, as shown in Tables VII through 
X. Time required to form the clusters in the first place is 

typically less than 10% of total time, although time differences 

between the two variations are much greater. 

We believe that teams spent more time on the Player 

clusters variation because they tended to create more 

interconnected clusters, which required more time both to solve 

and to merge. Table XI shows the interconnections among 

clusters for both architectures and graphs for Default clusters 

and Player clusters options. For example, for 4Way1Hop L1, 

player clusters have interconnections with other clusters 

ranging from 12 to 20. Nevertheless, once teams did complete 
the merge, after investing the extra time, they were often able 
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to come up with top quality solutions showing that they were 

sufficiently invested in the process to push it forward to a good 

solution. Some of the players spent good amount of time to fix 

the raw graph before they even partition it. That also helps 

them in getting good quality final solutions. Perhaps defining 

their own clusters created more investment in producing high 

quality results, but this is a topic for further research. 

TABLE XI.  INTERCONNECTIONS AMONG CLUSTERS FOR BOTH 

ARCHITECTURES AND GRAPHS FOR DEFAULT CLUSTERS AND PLAYER 

CLUSTERS 

 Default clusters Player clusters 

4Way1Hop L1  12 12, 13, 14, 18, 19, 20 

4Way1Hop L2 15 13, 15, 18 

8Way L1 12 13 

8Way L2 15 14, 15, 19, 22 

 

 

Because the Players clusters treatment was generally the 

most successful, we examine players’ strategies for this 

treatment. Figure 7 shows an example where players were 

given an initial raw graph, how players take a sequence of steps 

to divide the graph into clusters, solve those clusters 

individually and put them back together to solve the whole 
graph. We have noticed that players give high priority to nodes 

with higher degrees. They first separate out the nodes with 

more connections, try to align along either a horizontal or 

vertical line, then move the lower degree nodes behind that line 

and keep all the long distance violations in the middle as 

shown in Figure 7(b). They follow this approach until they get 

distinctive clusters and then color these clusters using different 

colors. Players solve these clusters individually and then put 

the solved clusters together during the merge phase. They often 

use rotate/flip tool to rotate or flip a group of nodes to fix their 

alignments to get the final solution. They use pass gates to 
remove the violations and rearrange the blocks to get the 

compact arrangement. 

Players’ results and process illustrate difficulty with routing 

between partitions that is evident in automated algorithms as 

well. Perhaps if partitioning strategies are to dominate, 

interconnect should be designed non-homogeneously with the 

difficulty of routing between partitions in mind. We have also 

observed a variety of interesting strategies while following 

players as they solved their own clusters, including rotation, 

pivoting, and sifting nodes or sub graphs up / down or across. 

Exploiting how such strategies may be exploited in automated 

algorithms is also a topic of future research. We also plan to 

extend our experimental studies by adding more benchmarks 

and architectures to our test suite. 

Informal discussion with teams also provides some 

additional insight. We found that players encountering the 

game for the first time were happier with the Default clusters 

variation, because they felt that they began from a more 

manageable starting point. However, more experienced players 

wanted more control over the game. As they developed their 
own strategies, they became more aware of the properties that 

were needed to separate the graph into good vs. poor clusters. 

Eventually, as players became even more experienced, they 

often preferred to take over and solve the entire graph as a 

whole (i.e., play using the Single variation). However, even 

these more experienced players noted that when the problem 

size becomes large, they prefer to play as a team to get to the 

final solution in a reasonable amount of time. These 

observations and our results indicate that a training process for 

new players may be especially beneficial.  
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Figure 7 (a). An initial graph L1 

 

 

 

Figure 7 (b). A team is making clusters, solving them, and merging them to get the final solution. 

 

Figure 7. A team is given an initial graph, players divide the graph into clusters, solve clusters, and merging clusters to get the 
final mapping solution. This example is for 4Way1Hop architecture and L1 benchmark.  
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