
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1477

On Multiplayer Techniques for Crowdsourcing

Mapping onto Custom Domain-Specific Architectures

Gayatri Mehta*, Xiaozhong Luo, Anil Kumar Sistla, Andrew Marin, Mukund Malladi, Krunalkumar Patel and

Brandon Rodgers

University of North Texas, Denton, TX, USA

Email: gayatri.mehta {at} unt.edu

Abstract— One of the grand challenges in the design of

portable/wearable devices is to achieve optimal efficiency and

flexibility in a tiny low power package. Coarse-grained

reconfigurable architectures (CGRAs) hold great promise for

energy-efficient flexible designs for a domain of applications.

CGRAs are very promising due to the ability to highly customize

such architectures to an application domain. However, mapping

applications onto such architectures is a perennially difficult

problem - the greater the customization of architecture, the

greater the difficulty of mapping applications onto that

architecture efficiently. Our previous research has shown that

crowdsourcing can be a highly effective means to solve small and

moderate sized mapping problems. This paper presents a case

study on multiplayer techniques with the goal of scaling to larger

and more complex mapping problems in a graceful manner. To

conduct this case study, we have designed a multiplayer version

of our interactive mapping game, UNTANGLED. In this work,

we used the benchmarks that are 2 to 5 times as large as those we

have served to players to date. Our results show that multiplayer

techniques are effective, and the most effective style of

presentation depends on player experience, with more
experienced players benefitting from a higher level of autonomy.

Keywords-mapping, placement, coarse-grained reconfigurable

architectures, custom domain-specific architectures, crowdsourcing

I. INTRODUCTION

Portable and wearable devices are ubiquitous, and the

demand for these devices is increasing exponentially. These

devices have a broad range of applications critical to health,

safety and security, personal multimedia, and aerospace.
Portable or wearable patient database displays can free doctors

from being tied to cumbersome desktop computers and

monitoring stations. Wearable sensors can monitor for

dangerous toxins to protect firefighters and workers in other

hazardous environments. Small, cheap, and low power

computers and sensors can be deployed in planets and space

systems to facilitate earth and planetary systems research.

Portable/wearable devices have many competing design

goals - they must be light-weight, mobile, flexible, low-power,

and high performance. The chip architecture that is selected is

a primary determinant of how well a device meets these

competing design goals. First of all, the architecture must be

reconfigurable; it must be capable of running many different

applications within a domain. Second, the architecture should

be customized as much as possible so that it can run the

intended applications with great efficiency and low power

consumption. Field Programmable Gate Arrays, for example,

while reconfigurable, are more general purpose and may be

highly inefficient. Coarse-grained reconfigurable architectures

(CGRAs) are an intriguing spot in the design space. They are

reconfigurable and highly customizable [1], [2]. A typical use
case for CGRAs today would be to run computational intensive

kernels of a collection of related applications such as

applications from the image-processing domain. However, they

may be capable of doing much more.

CGRAs are composed of relatively high-level

computational elements such as Arithmetic and Logic Units

(ALUs), which are capable of doing operations such as

addition, subtraction, and a simple interconnect such as

communication between nearest neighbors. To make use of

CGRAs, it is required to map a collection of applications in the

form of data flow graphs (DFGs), onto a given architecture

design. However, mapping dataflow graphs onto such
architectures is especially challenging, precisely because of the

customization that provides their advantage. The difficulty of

mapping onto CGRAs may be one bottleneck to widespread

adoption ([3], [4], [5], and [6]).

We focus on the mapping problem in this manuscript.

Figure 1 shows an example of mapping a data flow graph of an

application onto a stripe-based architecture. A DFG can be

represented as a collection of nodes connected by edges. Edges

are directional, representing flow of data from parent to child.

A mapping of a DFG onto a reconfigurable architecture

consists of an assignment of operators in the DFG to arithmetic
and logic units (ALUs) in the reconfigurable architecture such

that the logical structure of the application is preserved and the

architectural constraints of the architecture are followed. In the

stripe-based architecture shown in Figure 1, nodes are arranged

in horizontal stripes, each of which is connected to all nodes in

the stripe below them using a full crossbar interconnect.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1478

Results of mapping the indicated DFG onto the stripe-based

architecture are shown on the right side of the figure.

Figure 1. Mapping of a data flow graph onto a stripe-based
architecture.

To begin to address the mapping problem bottleneck, we

are pursuing a crowdsourcing approach, with the goals of both

obtaining high quality mappings and uncovering human
strategies. Specifically, we designed an interactive mapping

game, UNTANGLED [7], which has been online and active for

almost two years. UNTANGLED has received the People's

Choice Award in the Games and Apps category of the 2012

International Science and Engineering Visualization Challenge

conducted by the National Science Foundation and Science

([8], [9]). From our experimental studies conducted using

single player version of UNTANGLED, it was clear that the

mapping problem can be successfully crowdsourced [7]. After

the success of the single player version of our game, one very

important research challenge that we wanted to address and

focus on was - how large and difficult mapping problems can
be presented to the crowd when the problem size is too big and

complexity is high for an individual player to handle.

In this paper, we describe a case study to explore an

effective approach for presenting large and difficult mapping

problems to the crowd using UNTANGLED. We explore how

large and difficult mapping problems can be effectively

crowdsourced. In order to perform the case study, we have

developed a multiplayer version of our game that allows

players to work in teams and communicate with each other to

solve large and more difficult problems. This paper presents a

case study to find out how multiplayer versions of
UNTANGLED can be used to solve graphs that are up to 2 to 5

times as large as those we have served to players to date.

Our overall approach is to divide large graphs into clusters,

so that individual players can focus on mapping smaller parts

of the graph individually and then work together as a team to

merge and adjust their solutions. We explored two options: (a)

Default clusters, where the graph is sub-divided into clusters

in-house and presented to the players, and (b) Player clusters,

where players cooperate to divide the graph into clusters. We

compared these two options from the multiplayer game to the

single player option (Single).

We had two hypotheses entering this research work:

1) Working in teams will result in faster and better

solutions than working alone. In other words, the two

multiplayer options Default clusters and Player clusters should

give better results than the Single option.

2) The multiplayer option Default clusters will result in

faster and better solutions than the multiplayer option Player

clusters. In other words, when players are given good initial
clusters with which to begin, they will be able to launch right

into solving the individual clusters, and the work of merging

these clusters will be less, due to the care taken to provide

players with clusters having minimal interconnections.

This paper describes the multiplayer version of our game

UNTANGLED and the results obtained from our case study.

We found out that working in teams typically produced better

results than working alone. We also found to our surprise that

players using the Players cluster option tended to produce

better results, although it required significantly more time than

the other options on average. Informally, player preferences
were seen to evolve based on experience with the game. We

present and discuss these results in the sections that follow.

II. RELATED WORK

Our related research can be divided into three areas: coarse

grained reconfigurable architectures (CGRAs), CGRA

mapping algorithms, and games with a purpose. We discuss

each of these areas below.

A. Coarse Grained Reconfigurable Architectures

A variety of coarse grained reconfigurable architectures have

been proposed over the last 18 years, offering interesting

alternatives and variations: PipeRench / Kilocore [10], RAPID

[11], MATRIX [12], GARP [13], Morphosys [14], REMARC

[15], KressArray [16], RAW [17], RSPA [2], ADRES [18],

MORA [19], the CGRA architecture of Kim and his

colleagues [20], and SmartCell [21]. However, research in

CGRA architectural design on a broad scale continues. No

single design has emerged as dominant, and there is a need for

efficient design exploration techniques, along with high
quality and flexible mapping algorithms to allow these

techniques to achieve their full promise.

B. Mapping algorithms

The difficulty of the mapping problem has been well

discussed in the literature, and most non-trivial formulations
are NP-complete [22]. Most existing algorithms fall into one of

several styles, including greedy algorithms, randomized

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1479

algorithms, clustering algorithms, Integer Linear Programming,

and Analytical Placement. Comprehensive discussion and

further references can be found in the following surveys: [23],

[24], [25], [26], [27]. We note that other researchers have also

suggested that the difficulty of mapping may be one bottleneck

to widespread coarse grained reconfigurable architectures

(CGRAs) adoption [4]. There is much room for improvement

in any or all of these mapping algorithms, especially when we
wish to explore novel highly customized architecture designs.

In our previous research, we have shown that the mapping

problem can be successfully crowdsourced [7] and in fact

observations of human game play can lead to highly effective

automatic mapping algorithms [28]. In the current work, we

focus on large and complex mapping problems that are difficult

for an individual to handle.

C. Games with a Purpose

The potential of human computation for Electronic Design

Automation (EDA) has been nicely described in the research

of DeOrio and Bertacco [29], [30], who mention, for example,

the resemblance of the 1980’s video game Pipe Dream (Pipe

Mania [31]) to the problem of routing and the potential for

casting placement as a packing puzzle in the manner of Tetris.

DeOrio and Bertacco contribute a visual game environment

for solving instances of the SAT problem [32], which has

several interesting features for handling the problem of
scalability, including presenting the problem to players at

different scales and supporting multi-player versions of the

game that involve collaboration and/or competition. In

multiplayer FunSAT, one of the strategies players use is a

collaborative strategy, where each player works a smaller

chunk of the problem and players interact with each other to

get to the final solution. Another strategy that players use is

antagonistic strategy where more skilled players take control

over other players' sub-problems. Our multiplayer game

incorporates some features similar to FunSAT. In particular,

we introduce a collaborative technique for solving the

mapping problem. Throughout game play, players can
communicate using a chat window.

To our knowledge, we are the only researchers to solve the

mapping problem for custom reconfigurable architectures

using a crowdsourcing approach. In our previous research, we

have shown that the graphs containing approximately upto

sixty nodes and 70 edges can be solved effectively with

crowdsourcing [7]. The goal of the research described in this

paper is to extend beyond that size in a graceful manner.

III. PROBLEM STATEMENT

Figure 2 shows one view of the design space exploration

flow in which a designer may interact with various tools while

exploring architectural designs for their applications. In this

flow, the designer first configures a specific architecture,

supplies a set of benchmarks and specifies objectives that

should be optimized (e.g., a relative importance of power vs.

performance vs. area). The benchmarks (presented in the form

of Data Flow Graphs (DFGs) in our case) are mapped onto the

proposed architecture, and the resulting mapped designs are

simulated to obtain statistics relevant to the designer's

objectives. These statistics are fed back to the designer, who

then decides how to proceed to improve the design. The role

of the designer could also be replaced by an automatic routine
that iteratively attempts to optimize the architecture against a

specific objective or cost function.

Figure 2. One view of the flow of information for a
designer exploring various architectural design options.

In our research, we focus on the mapping problem shown in
the orange block in Figure 2. As we have mentioned earlier that

the mapping problem is very challenging for customized

architectures. We have crowdsourced the mapping problem,

relying on human flexibility, creativity, intuition, and

persistence, rather than on a specific, potentially limited

automatic mapping algorithm.

In our previous work, we have found out that the mapping

problem can be successfully crowdsourced [7]. The graphs

containing approximately upto sixty nodes and 70 edges can be

solved effectively with crowdsourcing. Players outperformed

Simulated Annealing by 2.5 standard deviations on average for
a set of benchmarks and architectures [7]. In this research, we

are exploring an effective approach for crowdsourcing large

and difficult mapping problems. Our goals in this research are:

(i) to find out if working in teams is a better approach for

solving large and complex mapping problems than working

alone; (ii) to find out if the problems should be divided into

smaller chunks and then presented to the players or the raw

graphs should be given to players and have them partition these

graphs into sub-clusters and solve them.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1480

Figure 3 (a). A data flow graph (H1)

Figure 3 (b). The same graph shown on the game screen
(H1).

Figure 3. The mapping problem consists of placing a DFG

onto a given architecture. The figure on the top shows one of

our example DFG's (H1), and the figure on the bottom shows

the same graph shown on the game grid. This example maps
the DFG onto 4Way2Hops mesh architecture.

IV. PRESENTING MAPPING PROBLEM AS A GAME

In this section, we describe how the mapping problem can

be encapsulated in a game and presented to players. In our

previous research, we have designed an interactive mapping

game, UNTANGLED [7]. The game is available online at

https://untangled.unt.edu. From the designer’s perspective,

UNTANGLED supports a variety of architectures and it allows

customization of interconnect arrangements and placement of

dedicated vertical routes and input/output (I/O) blocks.

From the player’s perspective, UNTANGLED presents a

succession of problems where a data flow graph (DFG) must

be mapped onto a specific architecture. To construct winning

mappings, players optimize their scores by moving nodes of

the DFG within a game grid to create compact arrangements

where parents are close to their children, where “close” is

defined based on the interconnect structure of the architecture.

Figure 3(a) shows an example of a DFG used in the game.
This is the H1 benchmark, which is the inverse discrete cosine

transform of MPEG II video compression. Here, nodes are

arithmetic operators, logical operators, multiplexers, or

passthroughs. The DFG is presented to players in an abstract

manner, with ALU’s as red rectangles shown in Figure 3(b).

This representation was adequate for our examples.

The game grid is an array of locations displayed to our

players, within which nodes of a DFG can be placed. We can

think of the game grid as an array of ALUs or other functional

elements, which have not yet been assigned operations. Placing

a node from the DFG in a grid location corresponds to
assigning an operation to a functional element. The

architecture’s interconnect defines the paths along which data

can flow efficiently within the game grid. In game play, players

are presented with an architecture definition, which is

abstracted as an icon showing legal connections between a

node and its neighbors as shown in Figure 3(b).

The game interface allows players to drag and drop nodes

within the game grid. Players can select and move clusters of

nodes. The interface allows players to rotate and mirror their

clusters. Players can add and remove passthroughs, which are

often required to route data from producer nodes to consumer

nodes within constraints of the architecture. Throughout the
game play, players can see their score and the violations in

their graph. They get incentives such as badges, medals during

the game play and they can track their scores / rankings in

comparison to other players around the world on the game

leaderboard.

V. UNTANGLED MULTIPLAYER

In this section, we describe the multiplayer version of the

UNTANGLED game, which has been designed to allow

players to work both individually on their own clusters and also

together as a team to solve a graph. The game is available

online (https://untangled.unt.edu/multiplayer). We describe
each of the three treatments, Default clusters, Player clusters,

and Single below.

For the Default clusters version of the game, clusters were

created in-house and presented to the players. To create the

clusters, we used a combination of off the shelf clustering

techniques and manual adjustment to obtain clusters that were

nearly equal in size and had minimal connections between

them.

Figure 4 shows some screenshots from the Default clusters

version of our interface. Figure 4(a) shows the initial game

https://untangled.unt.edu/
https://untangled.unt.edu/multiplayer

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1481

screen, where a player can start a new game, continue an

existing game, or join an existing game from other teams who

have made their games public. A player who has joined a game

has the option to select one of the predefined clusters, as shown

in Figure 4(b). Once a cluster has been selected, the players go

to their own play screen, shown in Figure 4(c). In this

screenshot, the player is playing the dark blue cluster and

communicating with other players using a chat window. The
orange, light-blue, and green nodes that we see in this dark blue

colored cluster are called port nodes. This means that this

cluster is connected to the orange, light-blue, and green clusters

through these port nodes. In addition to manipulating their own

cluster, players also have access to the complete initial graph at

all times. Players can view the most recent clusters from other

players, but cannot make modifications to clusters owned by

other players. They can only manipulate their own clusters.

Figure 4 (a). Create a new game or Continue or Join an
existing game.

Figure 4 (b). A screen with clusters, initial graph, and
merged graph options.

Figure 4 (c). A player playing a cluster and a chat window
for talking to the other players.

Figure 4. Multiplayer game interface.

Once all the clusters have been individually played by the

players of the team, the players have three options to choose

from: (i) they can work together to merge the clusters and reach

a final solution, or (ii) they can appoint a leader who is in

charge of integrating all the clusters to get a final solution, or

(iii) each player can merge the clusters and reach a final
solution and the best final solution among their group will

make to the leaderboard.

The Player clusters version of the game is very similar to

Default clusters. However, it has one initial step. At the

beginning of the game, the team works together to form the

clusters from a raw, uncolored initial graph. Once clusters are

selected, players individually sign up for clusters and play

proceeds as with the Default cluster version. Once the team

has formed clusters, the clusters cannot be changed.

The Single version of the game that was presented to users

was identical to the original UNTANGLED game as described
in [7]. No clusters are formed; the entire graph is played as a

single cluster, with no merging required. Teams had the option

to play the entire graph while sitting together, or play it

individually. In some cases, all team members from a team or a

few players from a team play individually a particular graph

and they generate multiple final solutions. In those situations,

we take the total time into account that went into getting all the

legal final solutions from that team and the best solution can

make it to the leaderboard.

Figure 5 shows initial and final graphs for the best solution

in each of the three styles of game play. The benchmark is L1

(described in Section VII). The architecture is 4Way1Hop (also
described in Section VII).

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1482

Figure 5. Benchmark L1 mapped onto the 4Way1Hop mesh
architecture (Best solution using each technique).

VI. USER STUDIES

The experimental protocol for our user studies was determined

to qualify for an exemption from the Institutional Review

Board of the University of North Texas. IRB protocols were

followed in these studies. We conducted formal in-house

studies in our lab where players were given an introduction to
the game and invited to play, while talking out loud about

what they were doing and their goals and expectations at each

step. Observations were made by our players. We have around

forty participants who have played the multiplayer version of

the game so far.

VII. EXPERIMENTS

For our case study, we used two architectures - 4Way1Hop

and 8Way and two benchmarks in each architecture.

4Way1Hop (shown in Figure 6 Left) is a mesh architecture

allowing connectivity to direct horizontal and vertical

neighbors, as well as horizontal and vertical connections that

skip one node. 8Way (shown in Figure 6 Right) is a mesh
architecture where nodes can connect to any of their 8

neighbors. These are both common CGRA architectures with a

good mix of power savings and performance but present quite

difficult mapping problem to the players because of their

difficult connectivity patterns. We assume that inputs can be

loaded and outputs read from any ALU. The benchmark

statistics are shown in Table I. The table shows the number of

nodes, edges, highest degree, and number of nodes with

degree 4 and higher in the benchmarks. We selected matrix

multiplication, and matrix inversion benchmarks for our

studies that appear in most of the signal processing

applications. These benchmarks are up to 2 to 5 times as large

as those we have served to players to date.

Figure 6. 4Way1Hop (Left) and 8Way (Right) mesh
architectures.

We have studied three techniques to solve large and more

difficult graphs. The first two techniques use the multiplayer

version of the game where players solve the graphs in teams:

(a) Default clusters, where the graph is sub-divided into

clusters in-house and presented to the players, (b) Player

clusters, where players cooperate to divide the graph into

clusters. For the third option, we presented raw initial graphs to

individuals in a single player game Single.

A total of 9 teams of 4 students each participated in our

experiments. Students in our case study were recruited from the

UNT EE student population and had some knowledge of

engineering, although as we have shown in our previous

research [7], this background is not required to perform well in

the game.

Twelve total treatments were possible:

 Three variations of the game (Default clusters, Player
clusters, or Single),

 Two architectures (4Way1Hop or 8Way), and

 Two benchmarks (L1 or L2)

Teams were presented with treatments in random order in order
to minimize the influence of learning effects in our results. The

number of treatments completed by each team ranged from 2 to

7. On average, teams completed 5 of the 12 treatments for a

total of 43 completed solutions, representing 14362 total

minutes of game time.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1483

TABLE I. BASIC INFORMATION RELATED TO THE BENCHMARKS

 Nodes Edges
Highest

Degree

No. of

Degree 4

Nodes

No. of

Degree 5

Nodes

No. of

Degree 6

Nodes

No. of

Degree 7

Nodes

L1-Matrix

Multiplication
108 116 5 0 4 0 0

L2-Matrix

Inversion
336 354 7 4 0 4 1

A. Our Simulated Annealing Algorithm

Simulated Annealing (SA) is frequently used for placement

because of its flexibility and good quality performance. We

developed our own SA algorithm that closely follows that of

Betz [33], with the exception that we do not use SA for

placement only, but perform routing in the inner loop of the

algorithm. Details of our custom SA can be found in [7]. The

scoring function for the SA was designed in a way to

encourage the algorithm towards good solutions. It takes into

account the penalty for violations and area. We compare our
players’ results with SA.

VIII. RESULTS

In this section, we first present an overview of our results, and

then answer the following questions - (i) Can players solve the

mapping problem?, (ii) Is multiplayer better than single

player?, and (iii) Which multiplayer technique is better?

A. Results Overview

We compare performance for the Default clusters, Player

clusters, and Single variations for each benchmark and

architecture separately. In particular, we ask the question for a

given problem (e.g., mapping the L1 benchmark to the

4Way1Hop architecture), which of these three variations of

the UNTANGLED game resulted in the best final mapping of

that benchmark onto the architecture?

These best in class results are broken out in Table II, Table III,

Table IV, and V. In particular, Table II gives the best

mappings for benchmark L1 and the 4Way1Hop architecture,

Table III gives the best mappings for benchmark L2 and the

4Way1Hop architecture, Table IV gives the best mappings for

benchmark L1 and the 8Way architecture, and Table V gives

the best mappings for benchmark L2 and the 4Way1Hop

architecture. We consider these results one by one.

In these tables, we see the size of each final graph in terms of

“Width X Height” as well as total number of “Functional

Units.” Functional units are counted as the number of units in
the smallest axis aligned grid that surrounds the final graph.

“Pass Gates” are the pink elements required to pass data

between nodes that are too distant to be connected directly by

the 4Way1Hop interconnect. “Scores” are given next. These

are the scores seen by the teams and individual players.

Players are evaluated and compete based on this score. Higher

scores are better. Violations in the mapped solutions are also

shown in the tables. These show the edges that cannot be

routed under the given architectural constraints.

Finally, the tables give time, in minutes, that the team spent
solving the graphs, enumerated by time spent to make the

clusters in the Player cluster version of the game, time spent

solving clusters in both multiplayer versions of the game, time

spent in merging the clusters for multiplayer games, and total

time spent in any version of the game.

Table II shows the size of the grid, number of pass gates used,

scores obtained, and time spent to achieve the highest scoring

solutions for the 4Way1Hop architecture and L1 benchmark

using all three techniques (Default clusters, Player clusters,

and Single). Results for this case can be viewed visually in
Figure 5. Players obtained the most compact mapping solution

for the Player clusters option, with a 9x14 grid, or

equivalently 126 functional units. SA created a compact

mapping but its score is lower than all other options but

Default clusters. In terms of time required to solve the graph,

however, the Player clusters option took longer than the

Default clusters option for players to reach their final

mapping solution. In this case the Single variation resulted in

an intermediate score of the three options, and required the

greatest amount of total time.

Table III shows the size of the grid, number of pass gates
used, scores obtained, and time spent to achieve the best

solution for the 4Way1Hop architecture and L2 benchmark

using all three techniques (Default clusters, Player clusters,

and Single). In this case, the Player clusters option again gave

the highest score, followed by Single and then Default

clusters. Solving the Player clusters option required an

extraordinary amount of time in this case, even compared to

the Single player variation. In this case, some of the teams

tried several different strategies to solve each cluster and then

tried several ways to integrate these clusters together to get the

final solution. We took into account all the time players of the
team (who provided the best solution) put in trying out

different options to get to the final solution. Note that although

the SA solution is more compact and has a higher score, it is

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1484

not a valid mapping, having 6 violations, edges that cannot be

routed using this architecture. In this case, SA failed to find

any valid solution.

TABLE II. GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST

SOLUTION IN EACH CATEGORY FOR 4WAY1HOP ARCHITECTURE AND L1

BENCHMARK. BEST VALUES ARE SHOWN IN BOLD

Default

clusters

Player

clusters
Single SA

Width X Height 16x14 9x14 11x14 14x14

Functional Units 192 126 154 134

Pass Gates 54 14 24 26

Scores 413930 462880 447660 429960

Violations 0 0 0 0

Time Spent in making

clusters (mins)
- 56 - -

Time Spent in solving

clusters (mins)
57 40 - -

Time Spent in merging

clusters (mins)
37 122 - -

Total Time Spent (mins) 94 218 232 1320

TABLE III. GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST

SOLUTION IN EACH CATEGORY FOR 4WAY1HOP L2. BEST VALUES ARE SHOWN

IN BOLD

Default

clusters

Player

clusters
Single SA

Width X Height 27x26 24x18 18x24 20x20

Functional Units 675 408 432 362

Pass Gates 138 61 69 26

Scores 2543470 2682300 2679000 2685190

Violations 0 0 0 6

Time Spent in making

clusters (mins)
- 12 - -

Time Spent in solving

clusters (mins)
239 344 - -

Time Spent in merging

clusters (mins)
70 579 - -

Total Time Spent

(mins)
309 935 499

2747

(approx.

2 days)

Table IV shows the size of the grid, number of pass gates

used, scores obtained, and time spent to achieve the best

solution for the 8Way architecture and L1 benchmark using all

three techniques (Default clusters, Player clusters, and Single).

The results show that SA produced the most compact mapping

and highest score, followed closely by Default clusters. For
this example, the Default clusters result was superior in terms

of score and far superior in terms of time required to solve the

graph.

Table V shows the size of the grid, number of pass gates used,

scores obtained, and time spent to achieve the best solution for

the 8Way architecture and L2 benchmark using all three

techniques (Default clusters, Player clusters, and Single). The

results show that Player clusters option provides us the most

compact mapping solution, followed by Default clusters and

then Single. For this example, you may note that the Default

clusters result required an inordinate amount of time, most of
it spent merging the clusters. In this case, the winning team

elected to have all four team members separately attempt the

merge and kept the highest scoring result. Time required for

the three failed attempts is also included in the final timing

result. In this case, SA again failed to find a valid mapping.

TABLE IV. GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST

SOLUTION IN EACH CATEGORY FOR 8WAY L1. BEST VALUES ARE SHOWN IN

BOLD

Default

clusters

Player

clusters
Single SA

Width X Height 12x14 15x15 14x13 13x13

Functional Units 156 210 182 134

Pass Gates 38 96 53 26

Scores 364380 318020 352550 368820

Violations 0 0 0 0

Time Spent in making

clusters (mins)
- 14 - -

Time Spent in solving

clusters (mins)
29 345 - -

Time Spent in merging

clusters (mins)
129 228 - -

Total Time Spent (mins) 158 588 602 1358

TABLE V. GRID SIZE, PASS GATES, SCORES, TIME SPENT FOR THE BEST

SOLUTION IN EACH CATEGORY FOR 8WAY L2. BEST VALUES ARE SHOWN IN

BOLD

Default

clusters

Player

clusters
Single SA

Width X Height 30x22 27x22 31x27 20x20

Functional Units 630 567 837 372

Pass Gates 201 145 183 36

Scores 2352120 2400800 2288000 2493230

Violations 0 0 0 4

Time Spent in making

clusters (mins)
- 1 - -

Time Spent in solving

clusters (mins)
232 74 - -

Time Spent in merging

clusters (mins)
927 888 - -

Total Time Spent (mins) 1159 963 398

2851

(approx.

2 days)

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1485

B. Can players solve the mapping problem?

In our previous research, we have shown that the graphs
containing approximately up to 60 nodes and 70 edges can be

solved effectively using crowdsourcing [7]. Players

outperformed Simulated Annealing by 2.5 standard deviations

on average for a set of benchmarks and architectures [7].

Players generated high quality, reliable mappings, and

outperformed our custom SA algorithm in 37 out of 42 trials

[34]. In this research, we answer the following question - For

larger and difficult mapping problems, how did our players do?

Players did better than SA 3 out of 4 times. They solved the

large and complex graphs and generated feasible solutions in

all the test cases. SA did not find a valid solution 2 out of 4

times in this case study.

C. Is Multiplayer Better than Single Player?

Our first hypothesis was that working in teams would result

in faster and better solutions than working alone. In view

of that hypothesis, we first present overall results comparing

the three techniques in terms of score and time. Table VI
shows the overall comparison of the three techniques studied

here. Broadly, we see that players who solved the same graph

with more than one variation of the game performed 1.6%

better than their own average score when they played the

Player clusters variation, 0.9% better than their own average

when they played the Default clusters variation, and 2.4%

worse, when they played the Single variation, suggesting a

trend favoring Player clusters followed by Default clusters

followed by Single.

TABLE VI. OVERALL COMPARISON OF THREE TECHNIQUES

Default

clusters

Player

clusters
Single

Difference from average 0.9% 1.6% -2.4%

Count of “wins” 4 wins 6 wins 3 wins

Count of “losses” 4 losses 3 losses 6 losses

We can view these results differently in terms of “wins” and

“losses,” for each game variation, here expressed as the

number of times a treatment resulted in a score that was above

a team’s own average for a given benchmark and architecture
(a “win”) or below it (a “loss”). In Table VI, we can see that

for Player clusters, teams beat their own average six of ten

times. For Default clusters teams showed as many “wins” as

“losses.” For Single, teams beat their own average only four

of ten times.

For more specific detail, to obtain the results in Table VI, we

considered results for each team, architecture, and benchmark

individually. We computed the average of the scores obtained

by that team using Default clusters, Player clusters, and

Single variations, including only whichever variations that

team actually played. We then calculated the percentage

difference from average for all variations for this team,

architecture, and benchmark. These results were averaged over

all the teams, benchmarks, and architectures to obtain the

compiled results shown in Table VI.

D. Which Multiplayer Technique is Better?

Our second hypothesis was that the multiplayer option

Default clusters will result in faster and better solutions

than the multiplayer option Player clusters.

Table VI has already given some indication to the contrary. In

terms of score, on average, teams performed better with the

Player clusters option than for Default clusters.

Table II, Table III, Table IV, and V also present information

to the contrary, in that the Player cluster variation produced

the best result for three of the four benchmark / architecture

combinations.

However, we can note from Table II, Table III, Table IV, and

V that Player clusters may be more time consuming to play.

In this section, we dig more deeply into the timing results.

Table VII shows the breakdown of the average time in
minutes spent by our players in building clusters, solving

clusters, and merging clusters to reach a final solution for

benchmark L1 and the 4Way1Hop architecture. This table

shows that the least time was required for the Default clusters

variation, followed by Single, followed by Player clusters.

TABLE VII. BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS,
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION -

4WAY1HOP L1 AND AVERAGED OVER ALL THE TEAMS

Default

clusters

Player

clusters
Single

Time Spent in making clusters - 28 -

Time Spent in solving clusters 68 50 -

Time Spent in merging clusters 55 181 -

Total Time Spent 123 259 188

Table VIII shows the timing breakdown for benchmark L2 and

the 4Way1Hop architecture. Here, the trend is similar,

although the larger graph required more time to solve. In this

case, there is virtually no difference from the time required for
the Default clusters vs. the Single variations.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1486

TABLE VIII. BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS,
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION -

4WAY1HOP L2 AND ALL THE TEAMS

Default

clusters

Player

clusters
Single

Time Spent in making clusters - 19 -

Time Spent in solving clusters 284 198 -

Time Spent in merging clusters 124 333 -

Total Time Spent 408 549 407

Table IX shows the timing breakdown for benchmark L1and

the 8Way architecture. Again, the trend shows that the least

time was required for the Default clusters variation, followed

by Single, followed by Player clusters.

Table X shows the timing breakdown for benchmark L2 and

the 8Way architecture. Here, timing information does not
follow the typical trend, showing relatively little time on

average applied to the Single variation, followed by Player

clusters then with the greatest time spent on Default clusters.

In this case, we have noticed that a couple of teams tried

several different strategies to solve their clusters and several

different ways to merge them together to get to the final

solutions. This is the most difficult of the four benchmark /

architecture combinations.

IX. DISCUSSION AND CONCLUSION

In this paper, we have described a multiplayer version of
the game UNTANGLED, with the goal of crowdsourcing the
problem of mapping large algorithms to custom domain
specific architectures. Our objective was to make it possible to
crowd source the mapping of larger and more complex graphs
than have been seen to date, while keeping the process
manageable and enjoyable for the players.

TABLE IX. BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS,
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION -

8WAY L1 AND ALL THE TEAMS

Default

clusters

Player

clusters
Single

Time Spent in making clusters - 15 -

Time Spent in solving clusters 62 345 -

Time Spent in merging clusters 173 203 -

Total Time Spent 235 563 257

TABLE X. BREAKDOWN OF TIME SPENT IN MAKING CLUSTERS,
SOLVING CLUSTERS, AND MERGING CLUSTERS FOR THE FINAL SOLUTION -

8WAY L2 AND ALL THE TEAMS

Default

clusters

Player

clusters
Single

Time Spent in making clusters - 25 -

Time Spent in solving clusters 250 116 -

Time Spent in merging clusters 458 249 -

Total Time Spent 709 390 170

Results of our case study show that the multiplayer game

produces better results than the previous, single player version.

Two sources of analysis support this result. First, teams playing

more than one variation obtain better scores on average with

either multiplayer variation than with the single player

variation. This result can be seen in Table VI, both as a higher

percentage difference from average score for the multiplayer
variations, as well as a greater number of “wins” vs. “losses”

for multiplayer.

Second, the overall best scores obtained for each

benchmark / architecture combination were obtained using a

multiplayer variation rather than a single player variation, as

shown in Table II, Table III, Table IV, and V. Specifically, the

Player clusters variation performed best in three out of four

cases, and the Default cluster variation performed best in one

out of four cases. The Single variation sometimes took second

place, but it was never the best of the three solutions.

Our second hypothesis was that the Default clusters
variation would produce better results than the Player clusters

variation. However, in terms of scores, the opposite hypothesis

was better supported, both in the Table VI and cumulatively

Table II, Table III, Table IV, and V. Results of our case study

show that the Player clusters variation typically produces better

scores (i.e., better final graphs) than the Default clusters

variation.

However, we observed that playing the Player clusters

variation required considerably more time for teams than

playing the Default clusters variation. In fact, the extra time

taken cannot be explained by the extra time required to make

the clusters in the first place, as shown in Tables VII through
X. Time required to form the clusters in the first place is

typically less than 10% of total time, although time differences

between the two variations are much greater.

We believe that teams spent more time on the Player

clusters variation because they tended to create more

interconnected clusters, which required more time both to solve

and to merge. Table XI shows the interconnections among

clusters for both architectures and graphs for Default clusters

and Player clusters options. For example, for 4Way1Hop L1,

player clusters have interconnections with other clusters

ranging from 12 to 20. Nevertheless, once teams did complete
the merge, after investing the extra time, they were often able

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1487

to come up with top quality solutions showing that they were

sufficiently invested in the process to push it forward to a good

solution. Some of the players spent good amount of time to fix

the raw graph before they even partition it. That also helps

them in getting good quality final solutions. Perhaps defining

their own clusters created more investment in producing high

quality results, but this is a topic for further research.

TABLE XI. INTERCONNECTIONS AMONG CLUSTERS FOR BOTH

ARCHITECTURES AND GRAPHS FOR DEFAULT CLUSTERS AND PLAYER

CLUSTERS

 Default clusters Player clusters

4Way1Hop L1 12 12, 13, 14, 18, 19, 20

4Way1Hop L2 15 13, 15, 18

8Way L1 12 13

8Way L2 15 14, 15, 19, 22

Because the Players clusters treatment was generally the

most successful, we examine players’ strategies for this

treatment. Figure 7 shows an example where players were

given an initial raw graph, how players take a sequence of steps

to divide the graph into clusters, solve those clusters

individually and put them back together to solve the whole
graph. We have noticed that players give high priority to nodes

with higher degrees. They first separate out the nodes with

more connections, try to align along either a horizontal or

vertical line, then move the lower degree nodes behind that line

and keep all the long distance violations in the middle as

shown in Figure 7(b). They follow this approach until they get

distinctive clusters and then color these clusters using different

colors. Players solve these clusters individually and then put

the solved clusters together during the merge phase. They often

use rotate/flip tool to rotate or flip a group of nodes to fix their

alignments to get the final solution. They use pass gates to
remove the violations and rearrange the blocks to get the

compact arrangement.

Players’ results and process illustrate difficulty with routing

between partitions that is evident in automated algorithms as

well. Perhaps if partitioning strategies are to dominate,

interconnect should be designed non-homogeneously with the

difficulty of routing between partitions in mind. We have also

observed a variety of interesting strategies while following

players as they solved their own clusters, including rotation,

pivoting, and sifting nodes or sub graphs up / down or across.

Exploiting how such strategies may be exploited in automated

algorithms is also a topic of future research. We also plan to

extend our experimental studies by adding more benchmarks

and architectures to our test suite.

Informal discussion with teams also provides some

additional insight. We found that players encountering the

game for the first time were happier with the Default clusters

variation, because they felt that they began from a more

manageable starting point. However, more experienced players

wanted more control over the game. As they developed their
own strategies, they became more aware of the properties that

were needed to separate the graph into good vs. poor clusters.

Eventually, as players became even more experienced, they

often preferred to take over and solve the entire graph as a

whole (i.e., play using the Single variation). However, even

these more experienced players noted that when the problem

size becomes large, they prefer to play as a team to get to the

final solution in a reasonable amount of time. These

observations and our results indicate that a training process for

new players may be especially beneficial.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation,

under grants CCF-1117800 and CCF-1218656. We would like

to thank Emily Lofaro for designing graphics for the game,

and all the players for their participation and feedback.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1488

.

Figure 7 (a). An initial graph L1

Figure 7 (b). A team is making clusters, solving them, and merging them to get the final solution.

Figure 7. A team is given an initial graph, players divide the graph into clusters, solve clusters, and merging clusters to get the
final mapping solution. This example is for 4Way1Hop architecture and L1 benchmark.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 06, November 2014

www.ijcit.com 1489

REFERENCES

[1] J. Cong, “Era of customization and specialization,” Keynote Speech,

IEEE International Conference on. Application-specific Systems,

Architectures and Processors (ASAP), 2011.

[2] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource sharing

and pipelining in coarse-grained reconfigurable architecture for

domainspecific optimization,” in Proceedings of the conference on
Design, Automation and Test in Europe - Volume 1, ser. DATE ’05,

2005, pp.12–17.

[3] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using
epimorphism to map applications on cgras,” in Design Automation

Conference (DAC), 2012 49th ACM/EDAC/IEEE, 2012, pp. 1280–
1287.

[4] J. Cong, “Era of customization and implications to eda,” Keynote

Speech, Synopsys University Reception, 48th Annual Design
Automation Conference (DAC), 2011.

[5] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim,

“Edgecentric modulo scheduling for coarse-grained reconfigurable
architectures,” in Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, ser. PACT ’08,
2008, pp. 166–176.

[6] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and R. Jeyapaul, “SPKM

: A novel graph drawing based algorithm for application mapping onto
coarse-grained reconfigurable architectures,” 2008 Asia and South

Pacific Design Automation Conference, pp. 776–782, Jan. 2008.
[Online].Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.ht

m?arnumber=4484056

[7] G. Mehta, C. Crawford, X. Luo, N. Parde, K. Patel, B. Rodgers, A. K.
Sistla, A. Yadav, and M. Reisner, “Untangled: A game environment for

discovery of creative mapping strategies,” ACM Trans. Reconfigurable
Technol. Syst., vol. 6, no. 3, pp. 13:1–13:26, Oct. 2013.

[Online].Available: http://doi.acm.org/10.1145/2517325

[8] “Winners of the 2012 international science & engineering visualization

challenge,” http://www.nsf.gov/news/special reports/scivis/winners
2012.jsp , National Science Foundation, 2013.

[9] “2012 international science & engineering visualization challenge,”

http://www.sciencemag.org/site/special/vis2012/ , Science, 2013.

[10] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.
Taylor, “Piperench: A reconfigurable architecture and compiler,” in

IEEE Computer, vol. 33, no. 4, April 2000.

[11] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD – Reconfigurable
Pipelined Datapath,” Field-Programmable Logic Smart Applications,

New Paradigms and Compilers, pp. 126–135, 1996. [Online].
Available: http://www.springerlink.com/index/f45122367533h852.pdf

[12] E. Mirsky and A. Dehon, “Matrix: A reconfigurable computing

architecture with configurable instruction distribution and deployable
resources,” in Proc. of IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM), 1996.

[13] J. R. Hauser and J. Wawrzynek, “Garp: A mips processor with a
reconfigurable coprocessor,” in IEEE Symposium on FPGAs for

Custom Computing Machines, K. L. Pocek and J. Arnold, Eds. Los
Alamitos, CA: IEEE Computer Society Press, 1997, pp. 12–21.

[14] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
C. Filho, “Morphosys: An integrated reconfigurable system for data-

parallel and computation-intensive applications,” IEEE Transactions on
Computers, vol. 49, no. 5, pp. 465–481, 2000.

[15] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia

array coprocessor,” in IEICE Transactions on Information and Systems
E82-D, 1998, pp. 389–397.

[16] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger,

“KressArray Xplorer: a new CAD environment to optimize
reconfigurable datapath array architectures,” in DAC, vol. 2. Ieee,

2000, pp. 12 163–168.
[Online].Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.ht

m?arnumber=835089

[17] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S.

Amarasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B.
Greenwald, H. Hoffmann, P. Johnson, and J. Kim, “Evaluation of the

raw microprocessor: an exposed-wire-delay architecture for ilp and
streams,” in Computer Architecture, 2004. Proceedings. 31st Annual

International Symposium on, june 2004, pp. 2 – 13.

[18] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, Eds.,
Architecture exploration of the ADRES coarse-grained reconfigurable

array, ser. Reconfigurable Computing: Architectures, Tools and
Applications. Springer, 2007.

[19] M. Lanuzza, S. Perri, P. Corsonello, and M. Margala, “A new
reconfigurable coarse-grain architecture for multimedia applications,”

in Adaptive Hardware and Systems, 2007. AHS 2007. Second
NASA/ESA Conference on, aug. 2007, pp. 119 –126.

[20] Y. Kim and R. N. Mahapatra, “A new array fabric for coarse-grained

reconfigurable architecture,” in DSD, 2008, pp. 584–591.

[21] C. Liang and X.-M. Huang, “Mapping parallel fft algorithm onto
smartcell coarse-grained reconfigurable architecture,” in ASAP, 2009,

pp. 231–234.

[22] M. Garey and D. Johnson, “Crossing number is NP-complete,” SIAM
Journal on Algebraic and Discrete Methods, vol. 4, no. 3, p. 312, 1983.

[Online].Available:http://link.aip.org/link/SJMAEL/v4/i3/p312/s1n&A
gg=doihttp://link.aip.org/link/?SJMAEL/4/312/1

[23] V. Tehre and R. Kshirsagar, “Survey on coarse grained reconfigurable

architectures,” International Journal of Computer Applications, vol. 48,
no. 16, June 2012.

[24] K. Choi, “Coarse-grained reconfigurable array: Architecture and

application mapping,” IPSJ Transactions on System LSI Design
Methodology, vol. 4, pp. 31–46, 2011.

[25] G. Theodoridis, D. Soudris, and S. Vassiliadis, “A survey of coarse-
grain reconfigurable architectures and cad tools,” in Fine- and Coarse-

Grain Reconfigurable Computing, S. Vassiliadis and D. Soudris, Eds.
Springer Netherlands, 2008, pp. 89–149.

[26] R. Hartenstein, “A decade of reconfigurable computing: a visionary

retrospective,” Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, pp. 642–649, 2001. [Online].

Available:http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnum
ber=915091

[27] ——, “Coarse grain reconfigurable architecture (embedded tutorial),”

in Proceedings of the 2001 Asia and South Pacific Design Automation
Conference, ser. ASP-DAC ’01. New York, NY, USA: ACM, 2001,

pp. 564–570.

[28] G. Mehta, K. Patel, N. Parde, and N. Pollard, “Data-driven mapping
using local patterns,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 32, no. 11, pp. 1668–1681,
2013.

[29] A. DeOrio and V. Bertacco, “Human computing for eda,” in Design

Automation Conference, 2009. DAC’09. 46th ACM/IEEE. IEEE,
2009, pp. 621–622.

[30] V. Bertacco, “Humans for eda and eda for humans,” in Proceedings of

the 49th Annual Design Automation Conference. ACM, 2012, pp.
729–733.

[31] The Assembly Line, “Pipe mania,” 1989.

[32] J. Krzemien, A. DeOrio, and V. Bertacco, “Funsat - multi-player,”
http://funsat.eecs.umich.edu/, 2011.

[33] V. Betz, “VPR: A new packing, placement and routing tool for FPGA

research,” Field-Programmable Logic and Applications, pp. 1–10,
1997.

[Online].Available:http://www.springerlink.com/index/1673hwlmm77
20606.pdf

[34] A. Sistla, N. Parde, K. Patel, and G. Mehta, “Cross-architectural study of

custom reconfigurable devices using crowdsourcing,” in Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW),

2013 IEEE 27th International, 2013, pp. 222–230.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4484056
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4484056
http://doi.acm.org/10.1145/2517325
http://www.nsf.gov/news/special%20reports/scivis/winners%202012.jsp
http://www.nsf.gov/news/special%20reports/scivis/winners%202012.jsp
http://www.sciencemag.org/site/special/vis2012/
http://www.springerlink.com/index/f45122367533h852.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=835089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=835089
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper

