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Abstract— The fuzzy c-means algorithm (FCM) is a widely used  

for fuzzy clustering. Usually, FCM uses the Euclidean distance as 

similarity measure among data points. However, this distance is 

strongly influenced by the larger units of measure and promotes 

the circular forms of data. A wide variety of distance measures 

have been suggested to detect different forms of cluster in data 

sets. A typical example of these distances is the Lp distance. In 

this paper, we show that values of the parameter p less than 1  

can improve significantly the performance of FCM, especially 

when the data set contains outliers. This measure is called 

fractional metric. For this, we realise a comparative study of 

FCM with different values of p on six data sets. The results show 

clearly that fractional metric allows FCM to produce good results 
in a wide variety of real world applications. 

Keywords- similarity; fractional metric; fuzzy c-means;  fuzzy 

clustering; distance Measures. 

I.  INTRODUCTION  

Clustering is an unsupervised learning process of exploring 

unlabeled input data of the form X={x1, x2,…, xn}  N where 
N

i Rx   represent a vector object and xij its jth feature. 

Clustering may be found under different appellations in 
different contexts, such as unsupervised learning in pattern 
recognition, numerical taxonomy in biology and typology in 
social science [1]. It has been widely applied in several 
different fields and various disciplines [2-4]. 

Several clustering algorithms are proposed in the literature. 
The most widely used clustering algorithm is FCM originally 
proposed by Bezdek [5]. Based on Fuzzy set theory which 
models uncertainty of belonging, this algorithm partitions the 
considered objects such as similar objects are in the same 
cluster and dissimilar objects belong to different clusters. 
Hence the crucial need for FCM of an appropriate way of 
measuring similarities between pairs of objects. 

One popular way to cluster a data set is to define a distance 
measuring similarity between pairs of objects. Gustafson and 

Kessel [6] have generalized the FCM algorithm and used an 
adaptive distance measure to detect ellipsoidal structures of the 
clusters. However, this algorithm needs added constraint and 
can only be used for a specific data [7]. Gath and Geva [8] 
have defined an «exponential» distance measure. This 
algorithm performs when clusters are spherical or ellipsoidal. 
Other distance measures were conceived in the literature such 
Sorensen [9] or Bray-Curtis[10], Canberra, Gower, Spearman 
or Squared Euclidean, Mahalanobis [11] and Minkowski        
(p ≥ 1) distances. Hathaway [12] had proposed to generalize 
the use of the Lp Norm Distances and given examples with   
0.5 ≤ p. 

In this paper, we show that using fractional metric with      
0 < p < 0.5 in clustering context improves results when 
compared to 0.5 ≤ p or the usual distances, especially when 
there are outliers. Six data sets including three data sets with 
outliers are tested. Our approach consists to repeat FCM using 
different values of p between two chosen values: 0,01 and 30. 
We also search if there is a correlation between characteristic 
and value of p that provide best results. 

The remainder of the paper is organized as follows. The 
next section presents p-metric and a succinct presentation of 
FCM. Test results are detailed and discussed in section 3. 
Conclusions are given in section 4.  

II. RELATED WORK 

The fuzzy c-means proposed by Bezdec [5] is based on 
Euclidean distance. This clustering algorithm presented a 
drawback when the data contain outliers. 

This section introduces the fuzzy c-mean and presents some 
research that overcome the inconvenience of Euclidean 
distance.  

A. Fuzzy c-means 

FCM is a generalization of K-means algorithm which is a 
hard clustering algorithm. K-means assigns each vector object 
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xi to a unique cluster with a degree of membership equal to 
one. As a consequence, clusters are disjointed and have well-
defined boundaries. In contrast, FCM assigns each data point to 
every cluster with different degrees of membership, and 
boundaries between generated clusters may be vague [5]. FCM 
is more successful compared to the crisp clustering with 
overlapping and not well separated clusters. 

 

A partition of X={x1, x2,…, xn}  N into c fuzzy clusters 
can be defined by a fuzzy membership matrix U=[uik] 
satisfying these three conditions[13]:  
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where uik is the degree to which the pattern xk belongs to the ith 

cluster (1 i c and 1 k n). 

The first constraint reflects the generalization of the 

characteristic function which assumes values in {0, 1}. For a 

given vector object, a value close to 1 indicates a high grade of 

belonging to the cluster. Inversely, value close to 0 indicates a 

low grade of belonging to the cluster. The second constraint 

guaranties that no cluster is empty or totally equal to X.
 
The 

last constraint assures that the membership of each object is 

distributed over all the c clusters. 

FCM is an iterative procedure that optimizes an objective 
function Jm. This objective function depends on the distances of 
the data to the cluster centres weighted by the membership 
degrees. By varying the distance function, different forms of 
cluster in data sets can be detected. The objective function Jm is 
defined by: 
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where: 

 m (1 < m < ) is a weighting exponent used to control 
the relative contribution of each object vector xi and 
the fuzziness degree of the final partition. 

 V= (v1, v2, … , vc) represents a c-tuple of prototypes, 
each prototype characterizes one of the c clusters. 

 d(xk,vi) is the distance between the ith prototype and the 
kth data point. 

Bezdek proved that FCM converges to an approximate 
solution under two conditions [13]: 
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The pseudo-code of FCM algorithm is given in Table I [13].  

TABLE I.  FCM ALGORITHM 

Store unlabeled Dataset X={x1, x2, …, xn}  
p; 

Choose 

 1<c<n; 

 m>1; 

 tmax (iteration limit); 

  the (tolerance bound); 

 norm for clustering criterion Jm; 

 norm for termination error Et=||Vt-Vt-1||err; 

Initialize 

 prototypes V0= (v1,0 , v2,0 , …,vc,0)  
cxp

 

 t=0; (iteration index) 

do { t++; 

 Calculate Ut using Vt-1 and (Eq.5); 

 Calculate Vt using Ut and (Eq.6); 

} while (||Vt-Vt-1||err > ) and (t < tmax) ); 

U* = Ut; V* = Vt; 

Use U* and/or V*; 

 

B. Distance Measures 

Mathematically, a distance measure “d” on a set of points E 

is a function d: E x ER+ such as d(x, y) between two points 
x and y should satisfy the following conditions: 

 yxyxyxd ,0),(   

 yxxydyxd ,),(),(   
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The most commonly used distance measure is the p-metric 

defined for two points x, y in k by: 
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The Lp distance measure is a metric for p ≥ 1 but not for 
p<1 because the triangular inequality property 

zyxzydyxdzxd ,,),(),(),(   is not satisfied for p<1 

[14]. However, this property is not necessarily required for 
clustering tasks. 

The p metric depends on the parameter “p” (
p ) 

called exponent of the metric, and covers the Minkowski 

distance ( 1p ) and fractional metrics ( 1p ). 

Moreover, from equation (10) it is easy to see that the 
Euclidean distance, L2, the Manhattan or city block distance, 
L1, and the Chebychev distance, L∞, are particular cases of Lp 
distance. 

The Euclidean distance ( 2p  ) is often used in spaces 

with two or three dimensions, but it creates a problem in case 
of large dimensions. Besides, it's strongly influenced by the 
larger units of measure and varies with the scale of each feature 
[15]. To deal with this problem, some authors proposed to 
calculate the Euclidean distance after centering, reduction or 
normalization of variables [2-4]. 

Manhattan distance ( 1p  ) between two vectors is 

computed by summing the absolute value of the difference on 
each dimension. Schematically, it consists to determine the 
distance that would be travelled to get from one point to the 
other if a grid-like path is followed. It is significantly less 
costly to calculate than Euclidean distance that requires taking 
a square root. 

Chebychev distance, or L∞ metric, is also known as 
"chessboard" distance. It returns the maximum distance among 
coordinates of a pair of objects. 

Spearman distance is the square of the Euclidean distance. 
It's easier to calculate than the Euclidean distance. 

Canberra distance is used where elements in the vector are 
non-negative. As defined, individual elements in distance could 
have zero for the numerator or denominator. 

Bray-Curtis or Sorensen distance is also called ecological 
distance. However, this measure does not satisfy the triangle 
inequality axiom, and then is not a true distance. 

III. THE PROPOSED TECHNIQUE 

A clustering algorithm can lead to different clusters. The 
selection of a distance measure may affect the final results, 
especially when data contain outliers. Our technique consist to 
repeat FCM algorithm using the measure Lp with different 
values of p as a measure of similarity among objects. The aim 
of these experiments is to search the impact of p on the 
obtained clusters and to predict the optimal set for p that can 
improve significantly the computational performance of fuzzy 

clustering. For this, we change the values of the coefficient p 
between two random chosen limits: 0,01 and 30. 

Generally, the use of a fractional norm in clustering context 
reduces the impact of extreme individual attribute differences 
[16]. But with p > 1, Lp distances emphasise the larger attribute 
dissimilarities between two vectors. An example for this is 
illustrated by Figure 1. This figure represents the first quadrant 
plot of unit length loci from the origin with different values of 
p. 

  

Figure 1  Representation of the Lp according to value of p  (0.1 ≤ p ≤ 0.9)  

 
     

Figure 2  Representation of the Lp according to value of p  (1 ≤ p ≤ 0.9) 
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IV. NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the impact of the parameter p on 
clustering, experiments are conducted on six datasets available 
from the UCI Machine Learning Repository [17]: Iris, Wine, 
BCW, Spect Heart, BreastTissu and Indian. 

These bases are supervised, but any information about 
classes is given to the algorithm. Thus, it is possible to 
determine the number of misclassified objects, and then the 
recognition rate. 

Table II describes the type of data and gives information 
about attributes, size and number of classes. 

To implement FCM, the values of the parameters should set 
up in advance. They consist of the following items: 

 The parameter m=2. 

 The maximum of iteration’s number is 500. 

  

TABLE II.  DESCRIPTION OF 10 DATASETS 

Dataset Instances Attributes Classes 

Iris 150 4 3 

BCW 699 9 2 

Wine 178 13 3 

Heart 267 22 2 

BreastTissu 106 9 6 

Indian 583 10 2 

 

The representation on the plan of those datasets (figure 3, 
figure 4 and figure 5) shows that Iris, BCW and Heart do not 
contain outliers. Whereas the others datasets (figure 6, figure 7 
and figure 8) contain outliers. 

 

Figure 3  Representation of the IRIS without outliers   

 

Figure 4  Representation of the BCW without outliers   

 

Figure 5  Representation of the Heart without outliers   

 

Figure 6  Representation of the Wine dataset with outliers  
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Figure 7  Representation of the Wine dataset with outliers  

 

 

Figure 8  Representation of the Wine dataset with outliers  

 

We repeat this algorithm by using different values of p 
between two arbitrarily chosen limits: 0,01 and 30. However, 
best results had always obtained for p between 0,01 and 11.  

In table 3, our results confirm those of some work on the 
limit of the Euclidean distance to solve the problems of 
classification [3,15]. Euclidian distance gave best recognition 
rate 89.34% for Iris dataset, but the same rate is also obtained 
for the values 5, 6, 7 and 8 of p. 

Moreover, some authors suggest using Euclidian distance 
in low dimensional spaces and Manhattan or fractional metrics 
in high dimensional spaces [3]. But our results contradict this. 
For example, dimension is 9 in BCW data, and the recognition 
rate given by Euclidian distance is 95.43%, that outperforms 
94.14% obtained with Manhattan distance. Also, Heart Data 
has 22 features, and recognition rate obtained by Euclidian 
distance is 58.06% whereas Manhattan has given 56.18%. 

The results show that there isn’t any relation between the 
value of p that provide best result, and the dimension of data. 
For example, Breast Tissu and BCW datasets have both 9 
attributes, but best result for the first is obtained with p= 0.1 

and p =0.4, whereas Chebychev distance (L∞) allows better 
result for the second dataset. 

We considered a possible influence of the number of 
classes. But results were not encouraging. Indeed, Iris and 
Wine datasets had both 3 classes, but best result for the Iris is 
obtained for values 5,6,7 and 8 of p. Wine had best result for 
p=0.2. 

We considered a possible relation between p and variable’s 
correlation. But the result was not encouraging. For example, 
both the Indian and BreastTissu datasets have best results for 
p<1, but the correlation is medium for the first dataset and high 
for the second dataset. 

This mentioned, representing data in the plan shows that 
p≥1 gives good results when the data sets do not contain 
outliers (Table III). Whereas the values of p<1 gives good 
results when there are outliers in data sets. This was confirmed 
by the obtained results (Table III), and extends the previous 
results [16] to fuzzy clustering framework. 

TABLE III.  RECOGNITION RATE FOR USUAL DISTANCES AND LP 

METRIC ON DATASETS WITHOUT OUTLIERS. 

 
Iris  BCW Heart 

Best recognition rate 

 (with p correspondent) 

89.34% 

(p = 2 and p 

for 5  to 8) 

96.71%  

(p= 11 ) 

84.27% 

(p = 5 – 6 - 7- 

8) 

Low recognition rate 

(with p correspondent) 

84.67% 

(p = 0.02 - 

0.03 - 0.04 - 

0.05 - 0.06) 

88.7% 

(p = 0.03 - 

0.04 ) 

50.19% 

(p = 12) 

Manhattan 88.67% 94.14% 56.18% 

Euclidian 89.34% 95.43% 58.06% 

Chybechev 88.67% 97% 52.06% 

Canberra 94.67% 95.28% * 

BrayCurtis 88% 97% 64.05% 

 

TABLE IV.  RECOGNITION RATE FOR USUAL DISTANCES AND LP 

METRIC ON DATASETS WITH OUTLIERS. 

 Wine  BreastTissu  Indian 

Best recognition rate 

 (p correspondent) 

93.83% 

(p = 0.2) 

46.23% 

(p = 0.09- 

0.1 - 0.4) 

55.58% 

(p = for  0.01 

to 0.09) 

Low recognition rate 

(p correspondent) 

69.11% 

(p = 0.9) 

22.65% 

(p = 14) 

28.99% 

(p = for 3 to 

15) 

Manhattan 73.04% 27.36% 30.37% 
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Euclidian 69.67% 30.19% 30.37% 

Chybechev 69.67% 27.36% 28.99% 

Canberra 94.95% 52.84% * 

BrayCurtis 71.92% 46.23% * 

 

In the table IV, the Canberra distance give the best rate for 

a specific data like Iris, Wine and BreasTissu. However, this 
distance is not used for Indian and Heart data sets.  

V. CONCLUSION 

Clustering analysis technique has an important role in data 
analysis. However it depends on the concept of dissimilarity 
(or distance). The choice of this is highly dependent on the data 
itself; and generally, there is no prior information in the 
unsupervised context. Several distances were proposed in the 
literature. However, Fractional metric (p < 1) has rarely been 
used in the clustering tasks.  

In this paper, we show that values of the parameter p less 
than 1can improve significantly the performance of FCM, 
especially when the data set contains outliers. This study gives 
encouraging results. Future work could be done, with the 
relation between the value of p and the entropy measure. 
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